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Abstract

Given a constrained variational problem on the 1-jet extensionJ1Y of a fibre bundlep : Y → X,
under certain conditions on the constraint submanifoldS ⊂ J1Y , we characterize the space of ad-
missible infinitesimal variations of an admissible sections : X → Y as the image by a certain first
order differential operator,Ps, of the space of sectionsΓ (X, s∗VY ). In this way we obtain a con-
strained first variation formula for the Lagrangian densityLω onJ1Y , which allows us to characterize
critical sections of the problem as admissible sectionss such thatP+

s ELω(s) = 0, whereP+
s is the

adjoint operator ofPs andELω(s) is the Euler–Lagrange operator of the Lagrangian densityLω as an
unconstrained variational problem. We introduce a Cartan form onJ2Y which we use to generalize
the Cartan formalism and Noether theory of infinitesimal symmetries to the constrained variational
problems under consideration. We study the relation of this theory with the Lagrange multiplier rule
as well as the question of regularity in this framework. The theory is illustrated with several examples
of geometrical and physical interest.
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1. Introduction

The problem of Lagrange in the calculus of variations on fibred manifolds can be estab-
lished as follows:

LetLω be a Lagrangian density on the 1-jet extensionJ1Y of a fibre bundlep : Y → X

on ann-dimensional oriented manifoldX (L ∈ C∞(J1Y ) andω a volume element onX) and
let S be a submanifold ofJ1Y such that (j1p)(S) = X (the constraint). A sections is said to
beadmissible if Im(j1s) ⊂ S, and given an admissible sections anadmissible infinitesimal
variation of s is ap-vertical vector field alongs, Dv

s ∈ Γ (X, s∗VY ) whose 1-jet extension
j1Dv

s is tangential to the submanifoldS alongj1s. The Lagrangian density defines on the set
ΓS(X, Y ) of admissible sections the functionalL(s) = ∫

j1s
Lω and, givens ∈ ΓS(X, Y ), if

Ts(ΓS(X, Y )) is the vector space of admissible infinitesimal variations ofs, the differential of
L at s is defined as (δsL)(Dv

s ) = ∫
j1s
Lj1Dv

s
(Lω), for Dv

s ∈ Ts(ΓS(X, Y )). In this situation,
an admissible sections ∈ ΓS(X, Y ) is said to becritical for the constrained variational
problem defined by the pair (Lω, S ⊂ J1Y ) whenδsL = 0 on the subspaceT c

s (ΓS(X, Y )) of
infinitesimal admissible variations with compact support; the main objective of the problem
of Lagrange is to determine these critical sections.

The traditional method to solve this problem has been the so-calledLagrange multiplier
rule, which assumes that the constraint submanifold may be expressed in the formS =
{j1
xs ∈ J1Y/Φ(j1

xs) = 0}, whereq : E → Y is a vector bundle onY andΦ : J1Y → E is a
bundle morphism onE satisfying certain regularity conditions (Hypothesis (HY1)of Section
3).

Assuming this, if one considers the unconstrained variational problem onJ1(Y ×Y E
∗)

(whereE∗ is the dual bundle ofE) of Lagrangian density (L+ λ ◦Φ)ω, whereλ ∈
Γ (J1(Y ×Y E

∗), E∗) is the tautological sectionλ(j1
x(s, λ)) = λ(x) and◦ denotes the bilin-

ear duality product, it holds that if (s, λ) ∈ Γ (X, Y ×Y E
∗) is critical for the unconstrained

variational problem (L+ λ ◦Φ)ω thens ∈ Γ (X, Y ) is critical for the constrained variational
problem (Lω, S ⊂ J1Y ).

In this way one may define a mapping:

Π : Γcrit(X, Y ×Y E
∗) → Γcrit(X, Y )

from the set of critical sections of the unconstrained variational problem (L+ λ ◦Φ)ω to
the set of critical sections of the constrained variational problem (Lω, S ⊂ J1Y ), that need
not be injective nor surjective. A fundamental question of the problem of Lagrange is to
determine sufficient conditions which allow us to ensure the surjectivity ofΠ.

In this paper we prove that, by imposing another condition on the constraint subman-
ifold S (Hypothesis (HY2)of Section3), it is possible to invert the mappingΠ on the
sectionss ∈ Γcrit(X, Y ) such that Imj1s belongs to a certain dense open subset ofS, which
solves the problem of Lagrange for this class of constrained variational problems in the
best possible way. Moreover, this method allows us to associate to these problems a Cartan
form with which we extend the corresponding Hamilton–Cartan formalism and Noether
theory of infinitesimal symmetries from the unconstrained variational calculus, which has
been so intensely studied in the literature (see, for example[1,4,9,12–15,18–20,24,26,28–
30,33,36,37]and references therein). In particular, in the case of one independent variable,
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one recovers from this general viewpoint the also abundant literature on the problem of La-
grange, specially that of the last years, whose physical and geometrical interest is well known
(vakonomic mechanics, subriemannian geometry, Morse theory for constrained problems,
etc., see for example[2,3,5,21–23,25,34]and references therein).

The interest of the subject has recently increased even more due to the new approach
to the problem of Lagrangian reduction, according to which a certain kind of varia-
tional problems, calledreducible, can bereduced to constrained variational problems of
a lower order, which serves as motivation to take these last problems together with the
associated structures asobjects of a possiblevariational category which includes the
Lagrangian reduction procedure as one of its fundamental operations (see, for example
[6–8,10,11,31,35]).

The plan of the work is as follows: After a brief review of the unconstrained case in Section
2, where we fix the method and notation, Section3 constitutes the core of our approach
where we establishHypotheses (HY1) and (HY2)on the constraint submanifoldS ⊂ J1Y ,
which allow us to characterize the spaceTs(ΓS(X, Y )) of infinitesimal admissible variations
of an admissible sections ∈ ΓS(X, Y ) as the image of certain first order linear differential
operator,Ps, on the space of sectionsΓ (X, s∗VY ) (Theorem 3.7). This is indeed the main
result of this section, and allows us to obtain a very nice constrained first variation formula
for the Lagrangian density (Theorem 3.8), with which we may characterize the critical
sections of the constrained variational problem as those admissible sectionss ∈ ΓS(X, Y )
such thatP+

s ELω(s) = 0, whereP+
s is the adjoint operator ofPs andELω is the Euler–

Lagrange operator ofLω as an unconstrained variational problem (Corollary 3.9).
In Section4 we introduce the Cartan form̃Θ onJ2Y (Definition 4.1) which allows us to

characterize critical sections by means of the corresponding Cartan equation (Theorem 4.3),
and to generalize Noether theory of infinitesimal symmetries to the constrained variational
problems under consideration (Definition 4.4andTheorem 4.5).

In Section5 we study the relation with the Lagrange multiplier rule, proving the fun-
damental bijectionΠ : Γcrit(X, Y ×Y E

∗) ˜−→Γcrit(X, Y ). Delving deeper into this relation,
it is also proven that the Cartan formsΘ(L+λ◦Φ)ω and Θ̃ of both problems can be pro-
jected onJ1Y ×Y E

∗ to a commonn-form Θ̂, so that the corresponding Cartan and Noether
formalisms can be reduced to this fibred manifold (Theorem 5.1andProposition 5.2). More-
over, taking the restriction of̂Θ to the submanifoldS ×Y E

∗ ⊂ J1Y ×Y E
∗ it is then possible

to state a notion of regularity (Definition 5.3), which allows us to identify critical sections
of the constrained variational problem with those sectionsŝ = (s̄, λ) ∈ Γ (X, S ×Y E

∗) that
satisfy the Cartan equation̂s∗i

D̂
dΘ̂ = 0, for anyD̂ ∈ X(S ×Y E

∗) (Theorem 5.5).
In Section6 the whole theory is illustrated with some classical examples in one or

more independent variables, with emphasis on the validity ofHypothesis (HY2), which
constitutes the basis of our approach.

The work finishes with an Appendix where we prove that the main results of the theory
do not depend on the chosen vector bundleq : E → Y nor on the bundle morphismΦ :
J1Y → E that define the constraint submanifoldS = Φ−1(0E).

All manifolds, mappings, tensors, etc. will be considered to beC∞. The notion of fibre
bundle will be understood in an ample sense, that is, aC∞ locally trivial surjective sub-
mersionp : Y → X. Throughout the paper we will use differential calculus with values in
vector bundles, following the reference[27] without explicitly mentioning it.
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2. A review of unconstrained variational calculus

Here, we summarize some aspects of first order unconstrained variational calculus that
we shall use. For the purposes of this paper we shall follow the formulation developed in
[13]. For other approaches to this topic, see[19,20,26,28]and references therein.

Letp : Y → X be a fibre bundle over an-dimensional manifoldX, oriented by a volume
elementω. Let J1Y be the 1-jet bundle of local sections ofp, andj1p : J1Y → X and
π : J1Y → Y be the canonical projections. If dimY = n+m and (xν, yj), 1 ≤ ν ≤ n, 1 ≤
j ≤ m is a fibred local coordinate system forp, we shall denote by (xν, yj, yjν) the natural
induced coordinate system forJ1Y , whereyjν(j1

xs) = ((∂/∂xν)(yj ◦ s))(x) for any section
s ∈ Γ (X, Y ).

Definition 2.1. Given a sections ∈ Γ (X, Y ), the vertical differential ofs at a pointx ∈ X
is the linear mapping (dvs)x : Ts(x)Y → Vs(x)Y given by the formula:

(dvs)xDs(x) = Ds(x) − (s ◦ p)∗Ds(x), Ds(x) ∈ Ts(x)Y

whereVY is the vertical bundle of the projectionp.

This notion allows us to define a 1-formθ on J1Y with values in the induced vector
bundleVYJ1Y , by the rule:

θj1
xs

(Dj1
xs

) = (dvs)x(π∗Dj1
xs

), Dj1
xs

∈ Tj1
xs

(J1Y )

This is the so called structure 1-form ofJ1Y , which is locally given by the expression:

θ =
∑
j

(
dyj −

∑
ν

yjν dxν
)

⊗ ∂

∂yj

This 1-form defines the basic structure ofJ1Y , with which the different notions on 1-jet
bundles are characterized. For example:

A sections̄ ∈ Γ (X, J1Y ) is the 1-jet extension of a sections ∈ Γ (X, Y ) (i.e. s̄ = j1s) if
and only if s̄∗θ = 0. An infinitesimal contact transformation (i.c.t.) is a vector fieldD̄ on
J1Y such that for any linear connection∇ on VY there exists an endomorphismf of the
induced vector bundleVYJ1Y such thatLD̄θ = f ◦ θ, where the Lie derivative is taken with
respect to the corresponding induced connection and the product “◦” is the obvious one. This
condition does not depend on the connection∇ and it holds that for every vector field onY
(not necessarilyp-projectable) there exists a unique i.c.t.j1D projectable toD. Moreover,
the mapD 
→ j1D is an injection of Lie algebras. The vector fieldj1D is called the 1-
jet extension of the vector fieldD. Locally, ifD =∑ν u

ν(∂/∂xν) +∑j v
j(∂/∂yj) (uν, vj ∈

C∞(Y )), then its 1-jet extension is:j1D =∑ν u
ν(∂/∂xν) +∑j v

j(∂/∂yj) +∑jν w
j
ν(∂/∂y

j
ν)
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where:

wjν = ∂vj

∂xν
+
∑
k

ykν
∂vj

∂yk
−
∑
µ

yjµ

(
∂uµ

∂xν
+
∑
k

ykν
∂uµ

∂yk

)

In what follows we shall denote byX(1)(Y ) the Lie algebra of all the i.c.t.s and byX(1)
c (Y )

the ideal of this Lie algebra defined by the i.c.t.s whose supports have compact image inX.
A first order variational problem on the bundlep : Y → X is defined by a functionL ∈

C∞(J1Y ) (the Lagrangian). Then-formLω (Lagrangian density) defines then a functional
L : Γ (X, Y ) → R by the rule:

L(s) =
∫
j1s

Lω =
∫
X

(j1s)∗Lω, s ∈ Γ (X, Y )

whereL is defined on the sections for which the above integral exists.
For each sections ∈ Γ (X, Y ) we define a linear formδsL : X(1)(Y ) → R by the rule:

(δsL)(D̄) =
∫
j1s

LD̄(Lω), D̄ ∈ X(1)(Y ) (2.1)

Definition 2.2. A sections is critical for the Lagrangian densityLω whenδsL = 0 on
X(1)
c (Y ).

Similar treatments can be given for fixed boundary problems and other situations.
A central problem of the variational calculus is the characterization of critical sections as

solutions of some differential system defined on a suitable jet bundle. The notion of Cartan
form associated to a Lagrangian density not only solves this problem, but also allows us
to generalize many notions from analytical mechanics to variational calculus. With the
approach that we shall follow here, this basic concept can be introduced as follows:

Proposition 2.3 (Momentum form).There exists a uniqueVY∗
J1Y

-valued (n− 1)-formΩLω
on J1Y such that ΩLω = iFω, where F is any VY∗

J1Y
-valued vector field on J1Y , solution

of the equation:

iF dθ = dL

over the π-vertical vector fields of J1Y , where the exterior derivative is taken with respect
to the induced connection on VYJ1Y of a linear connection ∇ on VY , and the bilinear
products are the obvious ones. The (n− 1)-formΩLω does not depend on the choice of the
connection ∇.

Proof. Let (xν, yj, yjν) be a local coordinate system forJ1Y and letΓ kνi, Γ̄
k
ji be the coeffi-

cients of the connection∇ onVY with respect to the coordinates (xν, yj), that is:

∇∂/∂xν
(
∂

∂yi

)
=
∑
k

Γ kνi

(
∂

∂yk

)
, ∇∂/∂yj

(
∂

∂yi

)
=
∑
k

Γ̄ kji

(
∂

∂yk

)
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From here, using these local expressions and imposing the conditions of our statement in
local coordinates,ΩLω is univocally determined by:

ΩLω =
∑
j,ν

∂L

∂y
j
ν

ων ⊗ dyj, ων = i(∂/∂xν)ω (2.2)

therefore, in virtue of the uniqueness of these local expressions, we conclude.�
The Cartan form associated to the Lagrangian densityLω is now defined as then-form

onJ1Y :

ΘLω = θ∧̄ΩLω + Lω (2.3)

where the exterior product̄∧ is taken with respect to the bilinear product defined by duality.
This differential form has the following important property:

Proposition 2.4. There exists an unique VY∗
J1Y

-valued (j1p)-horizontal n-form FLω on

J1Y such that:

dΘLω = θ∧̄(FLω − dΩLω) (2.4)

where the exterior derivative in the second member is taken with respect to the connection on
J1Y induced by a linear connection ∇ on VY with vanishing vertical torsion (i.e.∇D1D2 −
∇D2D1 − [D1,D2] = 0 for any pair D1,D2 of p-vertical vector fields on Y).

Proof. In the local coordinate system from the proof ofProposition 2.3, the condition
of vanishing vertical torsion leads tōΓ kij = Γ̄ kji. Taking this into account, Eq.(2.4) in the
statement locally allows us to univocally determineFLω by the formula:

FLω =
∑
i

 ∂L
∂yi

−
∑
ν,j

(
Γ
j
νi +

∑
k

ykνΓ̄
j
ki

)
∂L

∂y
j
ν

ω ⊗ dyi

and again in virtue of uniqueness, we conclude.�
TheVY∗

J1Y
-valuedn-formELω = FLω − dΩLω onJ1Y is called Euler–Lagrange form

of the variational problem, and allows us to define the classical Euler–Lagrange operator
ELω : s ∈ Γ (X, Y ) 
→ ELω(s) ∈ Γ (X, s∗VY∗) by:

ELω(s) ⊗ ω = (j1s)∗ELω

In a local coordinate system, this operator has the well-known form:

ELω(s) =
∑
i

(
∂L

∂yi
◦ j1s−

∑
ν

∂

∂xν

(
∂L

∂yiν
◦ j1s

))
dyi

Formula(2.4) is therefore a fundamental formula relating the three basic objects of the
theory, that is: the structure form on the bundle of 1-jets, the Euler–Lagrange operator, and



P.L. Garcı́a et al. / Journal of Geometry and Physics 56 (2006) 571–610 577

the Cartan form. Together with(2.3), it constitutes an intrinsic expression of the “Lepage
congruences” from the classical calculus of variations[30]. From them, the whole theory
can now be developed as follows:

Taking the Lie derivative of(2.3) with respect to any i.c.t.̄D ∈ X(1)(Y ) and bearing in
mind (2.4)we have:

Theorem 2.5 (First variation formula).There exists a VY∗
J1Y

-valued (n− 1)-form ξ on J1Y

(depending on D̄) such that:

LD̄(Lω) = θ(D̄) ◦ ELω + d(iD̄ΘLω) + θ∧̄ξ, D̄ ∈ X(1)(Y ) (2.5)

We can now express the linear functionalδsL defined by(2.1)with the formula:

(δsL)(D̄) =
∫
j1s

LD̄(Lω) =
∫
j1s

θ(D̄) ◦ ELω + d(iD̄ΘLω)

=
∫
X

ELω(s)(Dv
s )ω + d

(
iD̄ΘLω

)
, D̄ ∈ X(1)(Y ) (2.6)

whereDv
s is the vertical component alongs of the projectionDs ontoY of the vector field

D̄j1s alongj1s.

Due to formula(2.6)and to the fact that the mappinḡD ∈ X(1)(Y ) 
→ Dv
s ∈ Γ (X, s∗VY )

is surjective, we may redefine the linear formδsL on the “tangent space”Γ (X, s∗VY ) at
s ∈ Γ (X, Y ) of the set of sectionsΓ (X, Y ) by the following formula:

(δsL)(Dv
s ) =

∫
j1s

LD̄(Lω) =
∫
X

ELω(s)(Dv
s )ω + d(ΩLω(s)(Dv

s )) (2.7)

for Dv
s ∈ Γ (X, s∗VY ), where D̄ ∈ X(1)(Y ) is any i.c.t. extendingDv

s and ΩLω(s) =
(j1s)∗ΩLω.

In particular, for the sections with compact supportΓ c(X, s∗VY ), one gets by Stokes’
Theorem:

(δsL)(Dv
s ) =

∫
X

ELω(s)(Dv
s )ω, Dv

s ∈ Γ c(X, s∗VY )

therefore, byDefinition 2.2of critical section, we obtain:

Corollary 2.6 (Euler–Lagrange equation).A section s ∈ Γ (X, Y ) is critical if and only if:

ELω(s) = 0

On the other hand, from(2.4)and the previous corollary follows:

Corollary 2.7 (Cartan equation).A section s ∈ Γ (X, Y ) is critical if and only if for every
vector field D on J1Y it holds:

(j1s)∗ (iD dΘLω) = 0
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Following this guideline, Noether theory of infinitesimal symmetries of a variational prob-
lem can now be established as follows:

Definition 2.8. An infinitesimal symmetry of a variational problem with Lagrangian density
Lω onJ1Y is any vector fieldD ∈ X(Y ) such thatLj1D(Lω) = 0.

From formula(2.3) and (2.4), again, and from the second characterization of critical
sections (Corollary 2.7), follows:

Theorem 2.9 (Noether).If D is an infinitesimal symmetry and s is a critical section of a
variational problem with Lagrangian density Lω onJ1Y , then:

d[(j1s)∗ij1DΘLω] = 0

The (n− 1)-form ij1DΘLω onJ1Y is called the Noether invariant corresponding to the
infinitesimal symmetryD.

If we denote by Sym(Lω) the real Lie algebra of infinitesimal symmetries of the vari-
ational problem, this correspondence between infinitesimal symmetries and their Noether
invariants allows us to introduce the notion of multi-momentum map as follows:

Definition 2.10. The multi-momentum map associated to the variational problem
with Lagrangian densityLω on J1Y is the mappingµLω : Γ (X, Y ) → Sym(Lω)∗ ⊗
Γ (X,Λn−1T ∗X) defined by the rule:

µLω(s)(D) = (j1s)∗ij1DΘLω, D ∈ Sym(Lω)

It is important to note that this formulation of first order variational calculus has been gen-
eralized to higher order in[14,15,33]. A more recent review on this approach can be found
in [9, Section 2]. For other approaches to this topic, see[12,24,37]and references therein.

3. First order constrained variational problems. First variation formula.
Euler–Lagrange equations

Given a variational problem with Lagrangian densityLω on the 1-jet bundleJ1Y of a
bundlep : Y → X, the additional data needed to define a first order constrained variational
problem is a submanifoldS ⊂ J1Y such that (j1p)(S) = X (the constraint). This kind of
variational problems, first proposed and studied by Lagrange for the case of one independent
variable, can be stated as follows:

Definition 3.1. A sections ∈ Γ (X, Y ) is said to be admissible if Imj1s ⊂ S.

This condition defines a system of first order partial differential equations for the section
s ∈ Γ (X, Y ), whose set of solutionsΓS(X, Y ) can be seen as some kind of “manifold”, for
which the following notion of “tangent space” can be given:
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Definition 3.2. Given an admissible sections ∈ ΓS(X, Y ), an admissible infinitesimal vari-
ation of s is a p-vertical vector field alongs, Dv

s ∈ Γ (X, s∗VY ), whose 1-jet extension
j1Dv

s = j1Dv|j1s (Dv anyp-vertical extension ofDv
s to a neighborhood ofs in Y) is tan-

gential to the submanifoldS ⊂ J1Y alongj1s.

This tangency condition defines a system of linear first order partial differential equations
for the sectionDv

s ∈ Γ (X, s∗VY ) that can be seen as the “linearization” of the equation
Imj1s ⊂ S at the solutions ∈ ΓS(X, Y ). The real vector spaceTs(ΓS(X, Y )) defined by its
solutions can be interpreted as the “tangent space” to the “manifold”ΓS(X, Y ) at the point
s ∈ ΓS(X, Y ). In particular, we shall denote byT c

s (ΓS(X, Y )) the subspace of sections in
Ts(ΓS(X, Y )) with compact support.

Remark. Given s ∈ ΓS(X, Y ), if {st} (t ∈ (−ε, ε) ⊂ R, ε > 0) is a differentiable 1-
parametric deformation ofs = s0 by sections ofΓS(X, Y ), it is easy to see that the vector

field ∂st
∂t

∣∣∣
t=0

belongs toTs(ΓS(X, Y )), but the converse does not necessarily hold. A clas-

sical problem in the calculus of variations with constraints is to determine the admissible
sections for which such a result holds, which are called regular solutions of the equation
Imj1s ⊂ S (see[25] for a recent treatment of this question for one independent variable).
In any case, the present trend, which we shall follow here, is to takeTs(ΓS(X, Y )) as the
space of admissible infinitesimal variations for the problem of Lagrange, which, on the
other hand, constitutes the basic principle of the so called “vakonomic method” developed
for mechanical systems with non-holonomic constraints[2,5,21,34].

At this point, the Lagrangian densityLω defines on the setΓS(X, Y ) of admissible
sections the functional:

L(s) =
∫
j1s

Lω, s ∈ ΓS(X, Y )

and the differential ofL at any sections ∈ ΓS(X, Y ):

(δsL)(Dv
s ) =

∫
j1s

Lj1Dv
s
(Lω), Dv

s ∈ Ts(ΓS(X, Y ))

Definition 3.3. An admissible sections ∈ ΓS(X, Y ) is critical for the constrained varia-
tional problem with Lagrangian densityLω on J1Y and constraint submanifoldS ⊂ J1Y

when δsL = 0 on the spaceT c
s (ΓS(X, Y )) of admissible infinitesimal variations with

compact support.

As for the case of unconstrained variational problems, a fundamental question now is the
characterization of critical sections as solutions of some kind of partial differential equations.
Under certain hypotheses on the constraint submanifold, in this work we shall give such a
characterization obtaining an explicit Euler–Lagrange operator in an appropriate jet bundle.
In addition, the procedure we follow allows us to construct a Cartan form for this kind of
problems together with the subsequent generalization for this case of the corresponding
Cartan formalism.
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To specify the class of constraint submanifolds that we shall consider in the following,
together with the first condition (j1p)(S) = X, we shall assume the following:

Hypothesis (HY1). There exists a rankk vector bundleq : E → Y and a bundle
morphism:

such thatS = Φ−1(0E) (where 0E is the zero section ofE) and the restriction of dΦ to the
fibers ofπ : J1Y → Y has rankk alongS.

Locally, if U ⊂ Y is an (xµ, yj)-coordinated open subset whereE is trivial (EU = U ×
R
k), andeα (α = 1, . . . , k) is a local basis for the module of sectionsΓ (U,E|U ) induced

by this trivializationEU = U × Rk, thenΦ|U =∑α φ
αeα andΦ is defined byk functions

φ1, . . . , φk ∈ C∞((J1Y )U ), so that:

S ∩ (J1Y )U = {j1
xs ∈ (J1Y )U/φ

1(j1
xs) = 0, . . . , φk(j1

xs) = 0}

where (∂φα/∂yiν) has constant rank,k, alongS ∩ (J1Y )U .
In particular, ifΦ is affine with respect to the corresponding affine structures ofJ1Y

and E on Y, we say that the constraint is affine. For affine constraints we have:φα =
aα +∑i,ν b

να
i y

i
ν, whereaα, bναi ∈ C∞(YU ).

This morphismΦ can be seen as a section inΓ (J1Y,EJ1Y ) (EJ1Y the bundle overJ1Y

induced fromE by the projectionπ), in which case the constraint submanifold is simply
the zero set of this section, i.e.:S = {j1

xs/Φ(j1
xs) = 0} ⊂ J1Y .

From this point the following characterization ofTs(ΓS(X, Y )), the “tangent space” of
ΓS(X, Y ) at s ∈ ΓS(X, Y ), is straightforward:

Proposition 3.4. Dv
s ∈ Ts(ΓS(X, Y )) if and only if (j1Dv

s )Φ = 0, where the derivative of
the section Φ is taken with respect to any linear connection on EJ1Y .

Proof. From the local expressionΦ =∑α φ
αeα follows, by covariant derivative with re-

spect toj1Dv
s :

(j1Dv
s )Φ =

k∑
α=1

((j1Dv
s )φ

α)eα(j1s) + φα(j1s)((j1Dv
s )eα)

And now, ass is admissible,φα(j1s) = 0, and whichever the sections (j1Dv
s )eα might be, we

conclude that (j1Dv
s )Φ = 0 if and only if (j1Dv

s )φ
α = 0, which is, precisely, the condition

on j1Dv
s to be tangential to the submanifoldS alongj1s. �
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To express now a second hypothesis that we shall impose on the constraint submanifold
S ⊂ J1Y , we shall first generalize the formalism developed in Section2taking as Lagrangian
density theEJ1Y -valuedn-formΦω.

The two fundamentalPropositions 2.3 and 2.4can be generalized without essential
modifications:

Proposition 3.5 (Constraint’s momentum form).There exists a unique (VY∗ ⊗ E)J1Y -
valued (n− 1)-form ΩΦω on J1Y such that ΩΦω = iFω, where F is any (VY∗ ⊗ E)J1Y -
valued vector field on J1Y , solution of the equation:

iF dθ = dΦ

over the π-vertical vector fields of J1Y , where the exterior derivative is taken with respect
to the induced connections on J1Y of two linear connections ∇ on VY and ∇E on E and
the bilinear products are the obvious ones. The (n− 1)-form ΩΦω does not depend on the
choice of the connections ∇ and ∇E.

Proof. Let eα (α = 1, . . . , k) be a local basis of the module of sectionsΓ (Y,E) on a
neighborhood coordinated by (xν, yj, ykν), whereΦ =∑α φ

αeα, and letΓ kνi, Γ̄
k
ji be the

coefficients of the connection∇ onVY andγανβ, γ̄αjβ the coefficients of the connection∇E
on E, i.e.:

∇∂/∂xν
(
∂

∂yi

)
= Γ kνi

(
∂

∂yk

)
, ∇∂/∂yj

(
∂

∂yi

)
= Γ̄ kji

(
∂

∂yk

)
(∇E)∂/∂xν (eβ) = γανβeα, (∇E)∂/∂yj (eβ) = γ̄αjβeα

where Einstein convention on repeated indexes is used here and from now on.
Using these expressions, imposing the conditions of our statement in local coordinates,

the local expression ofΩΦω is univocally determined:

ΩΦω = ∂φα

∂yiν
ων ⊗ dyi ⊗ eα, ων = i(∂/∂xν)ω (3.1)

therefore, in virtue of the uniqueness, we conclude.�

As for the ordinary case, we may now define anEJ1Y -valued Cartann-form associated
to the constraint by the rule:

ΘΦω = θ∧̄ΩΦω +Φω (3.2)

with the following analogous property:

Proposition 3.6. There exists an unique (VY∗ ⊗ E)J1Y -valued (j1p)-horizontal n-form
FΦω on J1Y such that:

dΘΦω = θ∧̄(FΦω − dΩΦω) (3.3)
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where the exterior derivatives are taken with respect to the connections on J1Y induced by
a linear connection ∇ onVY with vanishing vertical torsion and a linear connection ∇E
on E.

Proof. In the local coordinate system from the proof ofProposition 3.5, Eq.(3.3)from the
statement locally allows us to univocally determineFΦω by the formula:

FΦω =
[
∂φα

∂yi
+ γ̄αiβφ

β − (Γ jνi + Γ̄
j
kiy

k
ν)
∂φα

∂y
j
ν

]
ω ⊗ dyi ⊗ eα

therefore, in virtue of the uniqueness of this local expression, we conclude.�

We shall call the (VY∗ ⊗ E)J1Y -valuedn-formEΦω = FΦω − dΩΦω onJ1Y the Euler–
Lagrange form associated to the constraint, which allows us to define the correspond-
ing Euler–Lagrange operatorEΦω : s ∈ Γ (X, Y ) 
→ EΦω(s) ∈ Γ (X, s∗(VY∗ ⊗ E)), by the
rule:

EΦω(s) ⊗ ω = (j1s)∗EΦω

Locally:

EΦω(s) =
[
∂φα

∂yi
◦ j1s− ∂

∂xν

(
∂φα

∂yiν
◦ j1s

)

+
(
γ̄αiβφ

β − (γανβ + ykνγ̄
α
kβ)
∂φβ

∂yiν

)
◦ j1s

]
dyi ⊗ eα (3.4)

From this point, variation formulas(2.5), (2.6) and (2.7)from Section2can be generalized
without any change to theEJ1Y -valuedn-formΦω. In particular, one gets:

Lj1Dv
s
(Φω) = EΦω(s)(Dv

s ) ⊗ ω + d(ΩΦω(s)(Dv
s )), Dv

s ∈ Γ (X, s∗VY ) (3.5)

which shall play an essential role in the determination of the tangent spaceTs(ΓS(X, Y )) at
s ∈ ΓS(X, Y ) of the spaceΓS(X, Y ). This is what we consider next.

The Euler–Lagrange operatorEΦω defines a section of the induced bundle (VY∗ ⊗ E)J2Y ,
while the momentum (n− 1)-formΩΦω induces by pull-back a (VY∗ ⊗ E)J2Y -valued (n−
1)-form onJ2Y . In these conditions, the second hypothesis we shall impose on the constraint
submanifoldS = {j1

xs/Φ(j1
xs) = 0} ⊂ J1Y is the following:

Hypothesis (HY2). On an open subset ofJ1Y , dense inS, there exists a sectionN ∈
Γ (J2Y, (E∗ ⊗ VY )J2Y ) solution of the system of equations:

ΩΦω ◦N = 0, EΦω ◦N = I (3.6)

where◦ stands for the bilinear product (VY∗ ⊗ E)J2Y × (E∗ ⊗ VY )J2Y → (End(E))J2Y

defined by the composition of morphisms, and I is the identity endomorphism in
Γ (J2Y, (End(E))J2Y ).
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In local coordinates, ifN = Niαe
∗α ⊗ (∂/∂yi) (whereNiα ∈ C∞(J2Y ) ande∗α is the dual

basis of a basiseα of Γ (J2Y,EJ2Y )), following (3.1) and (3.4), the system(3.6) may be
expressed as:

m∑
j=1

∂φα

∂y
j
ν

N
j
β = 0,

m∑
j=1

[
∂φα

∂yj
+
∑
γ

γ̄αjγφ
γ −

∑
ν

∂

∂xν

(
∂φα

∂y
j
ν

)]
N
j
β = δαβ (3.7)

(for 1 ≤ α, β ≤ k and 1≤ ν ≤ n), which is a system ofk2(n+ 1) linear equations withkm
unknowns that, in particular, fork ≤ m/(n+ 1) and maximal rank for the matrix of the
system, is compatible.

Remark.

1. WhereasHypothesis (HY1)is the usual one in the setting of the problem of Lagrange,
it is not so forHypothesis (HY2), which is new and is justified, among other reasons,
by the followingTheorem 3.7, where the tangent spaceTs(ΓS(X, Y )) is characterized as
the image of a linear differential operator on the space of sectionsΓ (X, s∗VY ). Though
this condition introduces an additional restriction on the constraint submanifolds, it still
leaves a wide margin for the application of this approach, as we shall see in Section6
of this work.

2. As can be seen, the second group of equations(3.7)depends on the choice of the con-
nection∇E onq : E → Y , due to the term

∑
γ γ̄

α
jγφ

γ . This dependence disappears both
when the equations are considered along the submanifoldS (whereφα = 0) and when
E and∇E are obtained by pull-back toY of a vector bundle onX and a connection on
this bundle. In the different applications this is the usual case, so we will be in situation
to eliminate this term.

The first important consequence of our hypothesis is, as we just mentioned, the following
characterization of the tangent spaceTs(ΓS(X, Y )):

Theorem 3.7. For any admissible section s ∈ ΓS(X, Y ), the first order differential operator
Ps : Γ (X, s∗VY ) → Γ (X, s∗VY ) defined by the rule:

Ps(D
v
s ) = Dv

s −Ns ◦ (j1Dv
s )Φ, Dv

s ∈ Γ (X, s∗VY ) (3.8)

whereNs ∈ Γ (X, s∗(E∗ ⊗ VY )) is the value along j2s of a solution N of the system (3.6), is a
projector from Γ (X, s∗VY ) onto the real subspace Ts(ΓS(X, Y )) of admissible infinitesimal
variations at s, whose kernel is the C∞(X)-submodule ofΓ (X, s∗VY ) defined by the sections
of the form Ns(e), e ∈ Γ (X, s∗E).

The first order differential operator P+
s : Γ (X, s∗VY∗) → Γ (X, s∗VY∗) given by the

rule:

P+
s Es ⊗ ω = Es ⊗ ω + λEs ◦ EΦω(s) ⊗ ω − dλEs∧̄ΩΦω(s), Es ∈ Γ (X, s∗VY∗)

(3.9)
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where λEs = −Es ◦Ns, satisfies the commutation rule:

Es(Ps(D
v
s ))ω = (P+

s Es)(D
v
s )ω + d(λEs ◦ΩΦω(s)(Dv

s )), Dv
s ∈ Γ (X, s∗VY ) (3.10)

Proof. By Proposition 3.4, Ps is the identity onTs(ΓS(X, Y )), thereforeTs(ΓS(X, Y )) ⊆
ImPs.

Conversely, given an elementPs(Dv
s ) from ImPs, following formula(3.5)we get:

Lj1(Ps(Dv
s ))(Φω)

= EΦω(s)(Ps(D
v
s )) ⊗ ω + d(ΩΦω(s)(Ps(D

v
s )))

= EΦω(s)(Dv
s −Ns ◦ (j1Dv

s )Φ) ⊗ ω + d(ΩΦω(s)(Dv
s −Ns ◦ (j1Dv

s )Φ))

= EΦω(s)(Dv
s ) ⊗ ω − EΦω(s)(Ns ◦ (j1Dv

s )Φ) ⊗ ω

+ d[ΩΦω(s)(Dv
s ) −ΩΦω(s)(Ns ◦ (j1Dv

s )Φ)]

now, due to the associativity of the bilinear products under consideration for the second and
fourth terms of this expression, and due to the Eq.(3.6)satisfied byN, it holds:

EΦω(s)(Ns ◦ (j1Dv
s )Φ) = (EΦω(s) ◦Ns)((j1Dv

s )Φ) = (j1Dv
s )Φ

ΩΦω(s)(Ns ◦ (j1Dv
s )Φ) = (ΩΦω(s) ◦Ns)((j1Dv

s )Φ) = 0

Therefore:

Lj1(Ps(Dv
s ))(Φω) = EΦω(s)(Dv

s ) ⊗ ω − (j1Dv
s )Φ⊗ ω + d(ΩΦω(s)(Dv

s ))

Taking now into account thatj1Dv
s andj1(Ps(Dv

s )) arej1p-vertical, the previous result may
be expressed as:

(j1(Ps(D
v
s ))Φ) ⊗ ω = EΦω(s)(Dv

s ) ⊗ ω − Lj1Dv
s
(Φω) + d(ΩΦω(s)(Dv

s ))

and finally, applying formula(3.5) again, yieldsj1(Ps(Dv
s ))Φ = 0, which byProposition

3.4means thatPs(Dv
s ) ∈ Ts(ΓS(X, Y )).

Furthermore, ifDv
s is in the kernel ofPs, thenDv

s = Ns ◦ (j1Dv
s )Φ and thus has the form

Ns(e), e ∈ Γ (X, s∗E). Conversely, if we have a vector field of the formDv
s = Ns(e), then:

Ps(Ns(e)) ⊗ ω = Ns(e) ⊗ ω −Ns ◦ (j1(Ns(e))Φ) ⊗ ω

= Ns(e) ⊗ ω −Ns ◦ Lj1(Ns(e))(Φω)

= Ns(e) ⊗ ω −Ns ◦ [EΦω(s)(Ns(e)) ⊗ ω + d(ΩΦω(s)(Ns(e)))]

If we apply again(3.6)we get thatΩΦω(s)(Ns(e)) = 0 andEΦω(s)(Ns(e)) = e, therefore:

Ps(Ns(e)) = 0
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Finally, to prove the last part of the statement, if we follow formula(3.5)andDefinition
(3.8)of Ps:

Es(Ps(D
v
s ))ω = [Es(D

v
s ) − Es(Ns ◦ (j1Dv

s )Φ)]ω

= Es(Dv
s )ω − (Es ◦Ns) ◦ Lj1Dv

s
(Φω)

= Es(Dv
s )ω + λEs [EΦω(s)(Dv

s ) ⊗ ω + d(ΩΦω(s)(Dv
s ))]

= Es(Dv
s )ω + λEs ◦ EΦω(s)(Dv

s ) ⊗ ω − dλEs∧̄ΩΦω(s)(Dv
s )

+ d(λEs ◦ΩΦω(s)(Dv
s )) = (P+

s Es)(D
v
s )ω + d(λEs ◦ΩΦω(s)(Dv

s ))

thus proving the theorem. �

Remark.

1. An important fact to be emphasized about formula:

Ts(ΓS(X, Y )) = Ps(Γ (X, s∗VY ))

is that, from the knowledge of a solution of the system of linear equations(3.6) (easy
to compute if compatible), one can obtain the general solution of the system of partial
differential equations (j1Dv

s )Φ = 0 forDv
s ∈ Γ (X, s∗VY ) (which definesTs(ΓS(X, Y )))

as the image ofΓ (X, s∗VY ) by a certain differential operator. Regardless of its generality
(this holds for arbitrary dimX), this construction differs notably from the usual param-
eterizations (for dimX = 1) of Ts(ΓS(X, Y )), which are based on a suitable integration
of (j1Dv

s )Φ = 0 with initial conditions.
2. Taking compact-supported sections, there easily follows:

T c
s (ΓS(X, Y )) = Ps(Γ

c(X, s∗VY ))

and integrating(3.10)overX:∫
X

Es(Ps(D
v
s ))ω =

∫
X

(P+
s Es)(D

v
s )ω

for any Dv
s ∈ Γ c(X, s∗VY ), Es ∈ Γ (X, s∗VY∗). Thus,P+

s coincides with the formal
adjoint of the operatorPs.

Coming back to the general formalism, we now obtain the following fundamental result:

Theorem 3.8 (Constrained first variation formula).For any admissible section s ∈
ΓS(X, Y ) and admissible variation Dv

s ∈ Ts(ΓS(X, Y )), it holds:

(δsL)(Dv
s ) =

∫
X

(P+
s ELω(s))(D̄v

s )ω + d[ΩLω(s)(Dv
s ) + λELω(s) ◦ΩΦω(s)(D̄v

s )]
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where D̄v
s ∈ Γ (X, s∗VY ) is any section such that Ps(D̄v

s ) = Dv
s .

In particular:

(δsL)(Dv
s ) =

∫
X

(P+
s ELω(s))(D̄v

s )ω, Dv
s ∈ T c

s (ΓS(X, Y ))

where D̄v
s ∈ Γ c(X, s∗VY ) is any section with compact support satisfying Dv

s = Ps(D̄v
s ).

Proof. The first formula is obtained by application of(2.7) to Dv
s = Ps(D̄v

s ), taking into
account(3.10), and the second one is then obtained taking compact-supported fields.�

The arbitrariness of̄Dv
s ∈ Γ c(X, s∗VY ) in the previous formula finally yields the follow-

ing characterization of critical sections:

Corollary 3.9 (Euler–Lagrange equations).A section s ∈ ΓS(X, Y ) is critical for the con-
strained variational problem with Lagrangian density Lω on J1Y and constraint subman-
ifold S = {j1

xs/Φ(j1
xs) = 0} ⊂ J1Y satisfying Hypotheses (HY1) and (HY2)if and only

if:

P+
s (ELω(s)) ⊗ ω = ELω(s) ⊗ ω + λELω(s) ◦ EΦω(s) ⊗ ω − dλELω(s)∧̄ΩΦω(s) = 0

(3.11)

where ELω is the Euler–Lagrange operator ofLω as an unconstrained variational problem,
and λELω(s) = −ELω(s) ◦Ns.

A remarkable fact about this characterization is that we have an explicit third order
differential operator:s ∈ Γ (X, Y ) 
→ Ẽ(s) = P+

s (ELω(s)) ∈ Γ (X, s∗VY∗) (Euler–Lagrange
operator) that, together with the constraints, provide us the set of critical sections of the
constrained variational problem under consideration:

Φ(s) = 0, Ẽ(s) = 0

Moreover, there exists aVY∗
J2Y

-valuedn-form onJ2Y which we shall call Euler–Lagrange
form:

Ẽ = ELω + λELω ◦ EΦω − dλELω ∧̄ΩΦω, λELω = −ELω ◦N (3.12)

such that, for any sections ∈ ΓS(X, Y ), it holds:

Ẽ(s) ⊗ ω = (j2s)∗Ẽ (3.13)

We must emphasize that such a characterization has been possible due to the consideration
of the “universal multiplier”:

λELω = −ELω ◦N ∈ Γ (J2Y,E∗
J2Y

) (3.14)

obtained from a solutionN of the system of linear equations(3.6) and from the Euler–
Lagrange operatorELω associated toLω as an unconstrained variational problem.
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Remark.

1. Eq.(3.11)proves that, for any critical sections ∈ ΓS(X, Y ), there exists a sectionλ(s) =
−ELω(s) ◦Ns ∈ Γ (X, s∗E∗) such that:

ELω(s) ⊗ ω + λ(s) ◦ EΦω(s) ⊗ ω − dλ(s)∧̄ΩΦω(s) = 0 (3.15)

This sectionλ(s) is unique, indeed ifλ′(s) also satisfies(3.15), the differenceη(s) =
λ′(s) − λ(s) would satisfy the equation:

η(s) ◦ EΦω(s) ⊗ ω − dη(s)∧̄ΩΦω(s) = 0 (3.16)

and, composing withNs and taking into accountHypothesis (HY2)(Eq. (3.6)), we
get 0= η(s) ◦ EΦω(s) ◦Ns ⊗ ω − dη(s)∧̄ΩΦω(s) ◦Ns = η(s) ⊗ ω, that is,η(s) = 0 and
λ′(s) = λ(s).

Regarding this, we easily see that the operatorϕs : Γ (X, s∗E∗) → Γ (X, s∗VY∗) de-
fined by the rule:

ϕsη⊗ ω = η ◦ EΦω(s) ⊗ ω − dη∧̄ΩΦω(s), η ∈ Γ (X, s∗E) (3.17)

is the adjoint of the operatorDs ∈ Γ (X, s∗VY ) 
→ (j1Ds)Φ ∈ Γ (X, s∗E), whose ker-
nel is, precisely,Ts(ΓS(X, Y )) (Proposition 3.4). The injectivity ofϕs, which we have
just proved, implies for problems in one independent variable (X = R) that the sec-
tion s is regular (see[23] or, more recently,[25, Theorem 6]). This suggests the
consideration of this injectivity condition as a suitable instrument to explore the
conditions for s ∈ ΓS(X, Y ) to be a regular solution of Imj1s ⊂ S in the general
case.

2. Taking the corresponding variation formulas (Section2 from [9]), Theorem 3.8,
Corollary 3.9and all the subsequent considerations also hold forr-order Lagrangian
densitiesLω, by only substitutingELω, ΩLω andELω by the corresponding objects of
higher order variational calculus.

4. Cartan form. Cartan equation. Noether Theorem

The multiplier (3.14) allows us to establish a Cartan formalism for this class of con-
strained variational problems, proceeding as follows:

Definition 4.1. We shall call Cartan form of the constrained variational problem the ordinary
n-form Θ̃ onJ2Y given by:

Θ̃ = ΘLω + λELω ◦ΘΦω (4.1)

whereΘLω andΘΦω are respectively the pull-back toJ2Y of the Cartan forms(2.3) and
(3.2), λELω ∈ Γ (J2Y,E∗

J2Y
) is the section defined by formula(3.14) and◦ is the duality

bilinear product between the vector bundlesEJ2Y andE∗
J2Y

.

Analogous to formula(2.4)of unconstrained variational calculus, we obtain the follow-
ing:
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Proposition 4.2.

dΘ̃ = θ∧̄Ẽ+ dλELω ∧̄Φω (4.2)

where Ẽ is the Euler–Lagrange form (3.12)of the constrained variational problem.

Proof. It is enough to compute d̃Θ using the differential calculus from Sections2 and 3
and to apply formulas(2.4), (3.3) and (3.12). �

Definition 4.1of Cartan form is justified by the following fundamental result:

Theorem 4.3 (Cartan equation).An admissible section s ∈ ΓS(X, Y ) is critical for the
constrained variational problem if and only if:

(j2s)∗(iDdΘ̃) = 0, ∀D ∈ X(J2Y ) (4.3)

equivalently: if and only (4.3) holds for any vector field D ∈ X(S(2)), where S(2) ⊂ J2Y

is the inverse image of the constraint submanifold S ⊂ J1Y by the canonical projection
j1π : J2Y → J1Y .

Proof. Givens ∈ ΓS(X, Y ) andD ∈ X(J2Y ), by Proposition 4.2, taking into account that
(j1s)∗θ = 0, (j1s)∗Φ = 0, and formula(3.13), we get:

(j2s)∗(iDdΘ̃) = (j2s)∗(θ(D) ◦ Ẽ) = Ẽ(s)(Dv
s )ω

whereDv
s ∈ Γ (X, s∗VY ) is thep-vertical component alongs of the projection onY of the

vector fieldDj2s alongj2s defined byD.
Taking now into account that the mappingD ∈ X(J2Y ) 
→ Dv

s ∈ Γ (X, s∗VY ) is surjec-
tive, thens is critical (i.e. Ẽ(s) = 0) if and only if (j2s)∗(iDdΘ̃) = 0 for any vector field
D ∈ X(J2Y ).

Only remains to prove that from the (weaker) condition (j2s)∗(iD dΘ̃) = 0 for any vector
field D ∈ X(S(2)) also follows thats is critical. Indeed, under this hypothesis and taking
into account that the mappingD ∈ X(S(2)) 
→ Dv

s ∈ Ts(ΓS(X, Y )) is surjective, the pre-
vious formula (j2s)∗(iD dΘ̃) = Ẽ(s)(Dv

s )ω together withTheorem 3.7allow us to state
that Ẽ(s)(Ps(Dv

s )) = 0 for anyDv
s ∈ Γ (X, s∗VY ). From this, due to commutation formula

(3.10) and beingP+
s a projector (soP+

s Ẽ(s) = P+
s P

+
s ELω(s) = P+

s ELω(s) = Ẽ(s)), we
obtain:

0 = Ẽ(s)(Ps(Dv
s ))ω = Ẽ(s)(Dv

s )ω + d(λ
Ẽ(s)

◦ΩΦω(s)(Dv
s ))

Taking now, in particular, sectionsDv
s with compact support, and integrating alongX, we

obtain:∫
X

Ẽ(s)(Dv
s )ω = 0, Dv

s ∈ Γ c(X, s∗VY )

and hencẽE(s) = 0, i.e.,s is critical. �
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In this framework, all the typical questions from unconstrained variational calculus can be
developed in a similar way. In particular, the notion of infinitesimal symmetry and Noether
Theorem can be established as follows:

Definition 4.4. An infinitesimal symmetry of the constrained variational problem is a
vector fieldD ∈ X(Y ) such that:

Lj1D(Lω) = 0, j1D is tangential toS

Theorem 4.5 (Noether). If s ∈ ΓS(X, Y ) is a critical section and D is an infinitesimal
symmetry of the constrained variational problem, then:

d[(j2s)∗ij2DΘ̃] = 0

Proof. FromLj1D(Lω) = 0 follows:

(j1s)∗Lj1DΘLω = (j1s)∗Lj1D(θ∧̄ΩLω + Lω) = (j1s)∗(θ∧̄η+ Lj1DLω) = 0

On the other hand, asj1D is tangential toS, (j1D)Φ = 0 holds alongS, which, together
with the annihilation ofΦ alongS, yields:

(j1s)∗ΘΦω = (j1s)∗(θ∧̄ΩΦω +Φω) = 0

(j1s)∗Lj1DΘΦω = (j1s)∗Lj1D(θ∧̄Ωφω +Φω)

= (j1s)∗(θ∧̄η′ + (j1D)Φω +ΦLj1Dω) = 0

From the previous three equations follows:

(j2s)∗Lj2DΘ̃ = (j2s)∗Lj2D(ΘLω + λELω ◦ΘΦω)

= (j1s)∗Lj1DΘLω + (j2s)∗((j2D)λELω ◦ΘΦω)

+ (j2s)∗(λELω ◦ Lj1DΘΦω) = 0

Now, ass is critical, Cartan equation yields (j2s)∗[ij2D dΘ̃] = 0, therefore:

d[(j2s)∗ij2DΘ̃] = (j2s)∗dij2DΘ̃ = (j2s)∗Lj2DΘ̃ = 0

as we wanted. �

If we denote by SymS(Lω) the real Lie algebra of infinitesimal symmetries of the con-
strained variational problem, we can now introduce the concept of multi-momentum map
for this kind of problems as follows:

Definition 4.6. The multi-momentum map associated to the constrained variational problem
(Lω, S ⊂ J1Y ) is the mapping ˜µLω : ΓS(X, Y ) → SymS(Lω)∗ ⊗ Γ (X,Λn−1T ∗X) defined
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by the rule:

µ̃Lω(s)(D) = (j2s)∗ij2DΘ̃ = (j1s)∗ij1DΘLω + λELω(s) ◦ (j1s)∗ij1DΘΦω

for anyD ∈ SymS(Lω).

5. Projectability of the Cartan form. Relation with the Lagrange multiplier rule.
Regularity

The multiplierλELω = −ELω ◦N ∈ Γ (J2Y,E∗
J2Y

) allows us to define a bundle mor-
phism:

(5.1)

by the rule:

ϕ(j2
xs) = (j1

xs, λELω (j2
xs))

Via this morphism the Cartan form̃Θ of the constrained variational problem is projected
to then-form onJ1Y ×Y E

∗:

Θ̂ = ΘLω + λ ◦ΘΦω (5.2)

whereλ ∈ Γ (J1Y ×Y E
∗, E∗

J1Y×YE∗ ) is the tautological sectionλ(j1
xs, e

∗
s(x)) = e∗s(x) and◦

is the bilinear duality product. That is, it holds:

Θ̃ = ϕ∗Θ̂ (5.3)

In these conditions, critical sections of the constrained variational problem admit the fol-
lowing new characterization:

Theorem 5.1. A section s ∈ ΓS(X, Y ) is critical for the constrained variational problem
if and only if the section ŝ = ϕ ◦ j2s = (j1s, λELω (j2s)) ∈ Γ (X, S ×Y E

∗) satisfies Cartan
equation:

ŝ∗(i
D̂

dΘ̂) = 0, ∀D̂ ∈ X(J1Y ×Y E
∗) (5.4)

or equivalently, if and only if (5.4)holds for any vector field D̂ ∈ X(S ×Y E
∗).

Proof. Let s ∈ Γ (X, Y ) be an admissible critical section for the constrained variational
problem, and̂s = ϕ ◦ j2s = (j1s, λELω (j2s)) ∈ Γ (X, S ×Y E

∗). As the canonical projection
J2Y → J1Y is regular and coincides with the composition ofϕwith the canonical projection
J1Y ×Y E

∗ → J1Y , we get the decomposition of the spaceX̂
s
(J1Y ×Y E

∗) of vector fields
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onJ1Y ×Y E
∗ alongŝ:

X̂
s
(J1Y ×Y E

∗) = ϕ∗(Xj2s(J
2Y )) + X̂

s
(E∗)

whereX̂
s
(E∗) is the space of vector fields alongŝ whose projection toJ1Y vanishes.

Following (5.3) and Cartan equation(4.3), for any vector fieldDj2s ∈ Xj2s(J
2Y ), it

holds:

(̂s)∗iϕ∗Dj2s dΘ̂ = (j2s)∗ ◦ ϕ∗(iϕ∗Dj2s dΘ̂) = (j2s)∗(iD
j2s

dΘ̃) = 0

On the other hand, for any vector fieldDE∗ ∈ X̂
s
(E∗), ass is admissible, following(5.2)

we have:

ŝ∗(iDE∗ dΘ̂) = ŝ∗iDE∗ ( dΘLω + dλ∧̄ΘΦω + λ ◦ dΘΦω)

= ŝ∗(iDE∗ dλ) ◦Φ(j1s) ⊗ ω = 0

Hence, for any vector field̂D = ϕ∗Dj2s +DE∗ alongŝ, it holds:

ŝ∗(i
D̂

dΘ̂) = ŝ∗iϕ∗Dj2s dΘ̂+ ŝ∗iDE∗ dΘ̂ = 0

which proves our statement in one direction for both cases.
Conversely, lets ∈ ΓS(X, Y ) satisfy(5.4). Applying nowPropositions 2.4 and 3.6, dΘ̂

can also be computed in the following way:

dΘ̂ = θ∧̄(ELω + λ ◦ EΦω − dλ∧̄ΩΦω) + dλ∧̄Φω (5.5)

so now, ass is admissible, we haveΦ(j1s) = 0 and taking in Eq.(5.4)an arbitrary vector
field D̂ ∈ X(J1Y ×Y E

∗):

0 = ŝ∗(i
D̂

dΘ̂) = ŝ∗(θ(D̂) ◦ (ELω + λEΦω − dλ∧̄ΩΦω))

= (ELω(s) ⊗ ω + λELω(s) ◦ EΦω(s) ⊗ ω − dλELω(s)∧̄ΩΦω(s))(Dv
s ) = Ẽ(s)(Dv

s ) ⊗ ω

whereDv
s ∈ Γ (X, s∗VY ) is the vertical component alongs of the projectionDs onY of the

vector fieldD̂̂
s

alongŝ.

From this point, due to the arbitrariness ofDv
s , Ẽ(s) = 0 and therefore, following

Corollary 3.9, the sections ∈ ΓS(X, Y ) is critical.
There only remains to prove that the (weaker) conditionŝ∗(i

D̂
dΘ̂) = 0 for any D̂ ∈

X(S ×Y E
∗) also implies thats is critical. In fact, from the previous computations and

Theorem 3.7, under this condition we obtaiñE(s)(Ps(Dv
s )) = 0 for anyDv

s ∈ Γ (X, s∗VY )
and proceeding in the same way as for the second part of the proof ofTheorem 4.3we
conclude that̃E(s) = 0, that is,s ∈ ΓS(X, Y ) is critical. �

Remark. It is important to note that it holds a corresponding projection of Noether Theorem.
Indeed, for any vector fieldD ∈ X(Y ), it holds:
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ij2DΘ̃ = ij2D(ΘLω + λELω ◦ΘΦω) = ij1DΘLω + (ϕ∗λ) ◦ ij1DΘΦω

= ϕ∗(ij1DΘLω + λ ◦ ij1DΘΦω) = ϕ∗ij1DΘ̂

and therefore for any section̂s = ϕ ◦ j2s, s ∈ Γ (X, Y ):

ŝ∗ij1DΘ̂ = (j2s)∗ ◦ ϕ∗ij1DΘ̂ = (j2s)∗ij2DΘ̃

In particular, ifD ∈ SymS(Lω) ands ∈ ΓS(X, Y ) is critical for the constrained variational
problem, followingTheorem 4.5:

0 = d((j2s)∗ij2DΘ̃) = d(̂s∗ij1DΘ̂) (5.6)

which is the projected Noether Theorem we wanted to prove.

The relation of these results with the “Lagrange multiplier rule” is straightforward:
Let us consider the unconstrained variational problem with Lagrangian density (L+

λ ◦Φ)ω on J1(Y ×Y E
∗), where we writeY ×Y E

∗ instead ofE∗ to keep in mind the
two components involved, and where we still denote byλ the pull-back of the tautological
section by the bundle morphism:

(5.7)

Simple computations allow us to prove that the Euler–Lagrange equations satisfied by
critical sections (s, λ) ∈ Γ (X, Y ×Y E

∗) of this variational problem are:

Φ(j1s) = 0, ELω(s) ⊗ ω + λ ◦ EΦω(s) ⊗ ω − dλ∧̄ΩΦω(s) = 0 (5.8)

Thus, ifs ∈ ΓS(X, Y ) is a critical section of the constrained variational problem, i.e.Ẽ(s) =
0, the section (s, λELω (j2s)) ∈ Γ (X, Y ×Y E

∗) satisfies Eq.(5.8), and conversely, if (s, λ) ∈
Γ (X, Y ×Y E

∗) satisfies these equations, by composition of the second equation in(5.8)
with Ns and taking into account(3.6) we obtainλ = λELω(s), therefores ∈ ΓS(X, Y ) and
Ẽ(s) = 0, that is,s is a critical section for the constrained variational problem.

The mappingΠ : (s, λ) ∈ Γ (X, Y ×Y E
∗) 
→ s ∈ Γ (X, Y ) defines then a canonical bi-

jection:

Π : Γcrit(X, Y ×Y E
∗) ˜−→Γcrit(X, Y ) (5.9)

between the set of critical sections of the unconstrained variational problem (L+ λ ◦Φ)ω
and the set of critical sections of the constrained variational problem (Lω, S ⊂ J1Y ), which
constitutes the expression in this formalism of the Lagrange multiplier rule.

Remark. The standard way to prove that any critical section (s, λ) ∈ Γ (X, Y ×Y E
∗) of the

unconstrained variational problem (L+ λ ◦Φ)ω is also critical for the constrained varia-
tional problem (Lω, S ⊂ J1Y ) is, as is well known, the following: from the first equation
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in (5.8), s ∈ ΓS(X, Y ), and taking arbitrary vector fieldsD ∈ X(s,λ)(Y ×Y E
∗) along (s, λ)

whose projection toY isDv
s ∈ T c

s (ΓS(X, Y )), i.e. such that (j1Dv
s )Φ = 0, one gets:

0 =
∫
j1(s,λ)

Lj1D(L+ λ ◦Φ)ω =
∫
j1s

Lj1Dv
s
Lω

therefores ∈ ΓS(X, Y ) is critical for the constrained variational problem.
However, this only proves that the mapping(5.9) is well defined, but it need not be

injective nor surjective. It is precisely to obtain the latter that one needs to impose additional
conditions. In particular, ourHypothesis (HY2)allows us to prove the fundamental bijection
(5.9)and, which is more attractive, in a purely differential-geometric way.

Regarding the relation between the Cartan forms involved in both formalisms, one gets
the following result:

Proposition 5.2. The Cartan form Θ(L+λ◦Φ)ω of the Lagrangian density (L+ λ ◦Φ)ω
projects via the bundle morphism ψ to the form Θ̂. That is:

Θ(L+λ◦Φ)ω = ψ∗Θ̂

Proof. Taking the differential ofL+ λ ◦Φ and taking into account that dλ vanishes on
vector fields ofJ1(Y ×Y E

∗) which are vertical overY ×Y E
∗, one gets byProposition 2.3:

Ω(L+λ◦Φ)ω = ΩLω + λ ◦ΩΦω

where we still denote byΩLω andΩΦω the pull-backs toJ1(Y ×Y E
∗) of the corresponding

momentum forms onJ1Y . Hence:

Θ(L+λ◦Φ)ω = θ∧̄Ω(L+λ◦Φ)ω + (L+ λ ◦Φ)ω

= θ∧̄ΩLω + Lω + λ ◦ (θ∧̄ΩΦω +Φω) = ΘLω + λ ◦ΘΦω
and, taking into account the notation we use for the pull-back of the differential forms, this
is preciselyψ∗Θ̂. �

At this point, we are ready to study the question of regularity for the constrained varia-
tional problems of the present work, which we shall consider before closing this section.

First of all, it must be noted that the unconstrained variational problem with Lagrangian
density (L+ λ ◦Φ)ω onJ1(Y ×Y E

∗) is not regular in the ordinary sense, as the Hessian of
the LagrangianL+ λ ◦Φ contains zero rows due to the independence from first derivatives
of λ. Intrinsically, this arises from the fact that the Cartan formΘ(L+λ◦Φ)ω of this variational
problem can be projected onto the form̂Θ on J1Y ×Y E

∗ which, as we saw, is also the
projection of the Cartan form̃Θ. Taking into accountTheorem 5.1and inspired on the
treatment given in[16,17] for the regularity of higher order variational problems whose
Cartan form can be projected to lower order, we shall present the regularity question for the
constrained variational problems we are considering, as follows:
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We aim to obtain a condition on the constrained variational problem that will allow
us to assure that for any sectionŝ = (s̄, λ) ∈ Γ (X, J1Y ×Y E

∗), solution of Cartan equa-
tion ŝ∗i

D̂
dΘ̂ = 0, ∀D̂ ∈ X(S ×Y E

∗), its projection ontoY is a critical sections of the

constrained variational problem such thats̄ = j1s andλ = λELω (j2s).
As we will prove, this problem can be solved in a satisfactory way by means of the

following regularity condition:

Definition 5.3. A constrained variational problem is regular when the polarity
D̂ ∈ TY (S ×Y E

∗) 
→ i
D̂

dΘ̂ ∈ ΛnT ∗(J1Y ×Y E
∗), on the spaceTY (S ×Y E

∗) of vector

fields that are tangential to the submanifoldS ×Y E
∗ ⊂ J1Y ×Y E

∗ and vertical overY, is
injective.

Proposition 5.4. A constrained variational problem is regular if and only if along the
submanifold S ×Y E

∗ ⊂ J1Y ×Y E
∗ it holds:

det


∂2(L+ λ ◦Φ)

∂yiµ∂y
j
ν

∂φα

∂yiµ(
∂φα

∂y
j
ν

)t
0

 �= 0 (5.10)

Proof. Using flat connections associated to a system of local coordinates (xν, yj, y
j
ν, λα)

onJ1Y × E∗ and taking into account formulas(2.2), (2.3), (3.1) and (3.2), along the sub-
manifoldS ×Y E

∗ we get:

dΘ̂ = d(θ ∧ (ΩLω + λ ◦ΩΦω) + (L+ λ ◦Φ)ω)

= d

(
∂L̂

∂y
j
ν

)
∧ θj ∧ ων + ∂L̂

∂yj
θj ∧ ω

whereL̂ = L+ λ ◦Φ, θj = dyj − y
j
ν dxν, andων = i(∂/∂xν)ω.

Let D̂ = f
j
ν (∂/∂yjν) + fα(∂/∂λα) be an arbitrary vector field, vertical overY and tangen-

tial to the submanifoldS ×Y E
∗ ⊂ J1Y ×Y E

∗, that is,f jν (∂φα/∂yjν) = 0.
Computing now the inner product of̂D with dΘ̂ one gets:

i
D̂

dΘ̂ = D̂

(
∂L̂

∂y
j
ν

)
θj ∧ ων =

(
∂2L̂

∂yiµ∂y
j
ν

f iµ + ∂φα

∂y
j
ν

fα

)
θj ∧ ων

so i
D̂

dΘ̂ = 0 for someD̂ = f
j
ν (∂/∂yjν) + fα(∂/∂λα) ∈ TY (S ×Y E

∗) if and only if the ho-

mogeneous system ofmn+ k linear equations inmn+ k unknowns (f jν , f α) holds:

∂2L̂

∂yiµ∂y
j
ν

f iµ + ∂φα

∂y
j
ν

fα = 0,
∂φα

∂yiµ
f iµ = 0

Therefore, fromDefinition 5.3of regularity, we conclude. �
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From here we are ready to prove the following:

Theorem 5.5. Let (Lω, S ⊂ J1Y ) be a regular constrained variational problem.
If ŝ = (s̄, λ) ∈ Γ (X, S ×Y E

∗) is solution of the Cartan equation:

ŝ∗i
D̂

dΘ̂ = 0, ∀D̂ ∈ X(S ×Y E
∗) (5.11)

then the projection s ∈ Γ (X, Y ) of s̄ to Y is a critical section of the constrained variational
problem such that s̄ = j1s and λ = λELω (j2s).

Proof. Let yj = sj(x1, . . . , xn) andyjν = s
j
ν(x1, . . . , xn) be the equations of the sections̄

in a local coordinate system.
Taking the inner product of d̂Θ with vector fields of the form̂D = (0, fα(∂/∂λα)) ∈

X(S ×Y E
∗), for arbitrary fα, we obtain using the local formulas from the proof of

Proposition 5.4:

0 = ŝ∗i
D̂

dΘ̂ = fα
∂φα

∂y
j
ν

(
∂sj

∂xν
− sjν

)
ω

therefore, due to the arbitrariness offα, we get:

∂φα

∂y
j
ν

(
∂sj

∂xν
− sjν

)
= 0

Taking the inner product of d̂Θwith vector fields of the form̂D = (f jν (∂/∂yjν),0), where
f
j
ν must satisfyf jν (∂φα/∂yjν) = 0 for D̂ to be tangential toS ×Y E

∗, we get:

0 = ŝ∗i
D̂

dΘ̂ = −f jν
∂2L̂

∂yiµ∂y
j
ν

(
∂si

∂xµ
− siµ

)
ω

whereL̂ = L+ λ ◦Φ, and considering the arbitrariness off
j
ν under the tangency condition

f
j
ν (∂φα/∂yjν) = 0, there exist functionsgα ∈ C∞(X) satisfying:

− ∂2L̂

∂yiµ∂y
j
ν

(
∂si

∂xµ
− siµ

)
= gα

∂φα

∂y
j
ν

So, the functions (∂si/∂xµ) − siµ andgα satisfy the system of homogeneous linear equa-
tions:

∂2(L+ λ ◦Φ)

∂yiµ∂y
j
ν

(
∂si

∂xµ
− siµ

)
+ ∂φα

∂y
j
ν

gα = 0,
∂φα

∂yiµ

(
∂si

∂xµ
− siµ

)
= 0
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which, due to regularity condition andProposition 5.4has only the trivial solution, and in
particular:siµ = ∂si/∂xµ, that is,s̄ = j1s.

Using now formula(5.5)for dΘ̂ and taking the inner product with tangential vector fields
D̂ of S ×Y E

∗ we get, taking into account thats̄ = j1s andΦ(s̄) = 0:

0 = ŝ∗i
D̂

dΘ̂ = (j1s, λ)∗(θ(D̂) ◦ (ELω + λEΦω − dλ∧̄ΩΦω))

= (ELω(s) ⊗ ω + λ ◦ EΦω(s) ⊗ ω − dλ∧̄ΩΦω(s))(D̄v
s ) ⊗ ω

whereD̄v
s ∈ Ts(ΓS(X, Y )) is the vertical component alongs of the projectionD̄s on Y of

the vector fieldD̂̂
s
, arbitrary inTs(ΓS(X, Y )) whenD̂ ∈ X(S ×Y E

∗).
ThereforeD̄v

s = Ps(Dv
s ) with arbitraryDv

s ∈ Γ (X, s∗VY ), and thus̄Es(Ps(Dv
s )) = 0 for

anyDv
s ∈ Γ (X, s∗VY ), where we denote:

Ēs ⊗ ω = ELω(s) ⊗ ω + λ ◦ EΦω(s) ⊗ ω − dλ∧̄ΩΦω(s)

Following (3.9)we have now:

P+
s Ēs ⊗ ω = Ēs ⊗ ω + λĒs ◦ EΦω(s) ⊗ ω − dλĒs∧̄ΩΦω(s)

where we may computeλĒs = −Ēs ◦Ns using(3.6)as follows:

λĒs ⊗ ω = −Ēs ◦Ns ⊗ ω = −(ELω(s) ◦Ns) ⊗ ω − λ ◦ (EΦω(s) ◦Ns) ⊗ ω

+ dλ∧̄(ΩΦω(s) ◦Ns) = (λELω(s) − λ) ⊗ ω

hence:

P+
s Ēs ⊗ ω = Ēs ⊗ ω + (λELω(s) − λ) ◦ EΦω(s) ⊗ ω − d(λELω(s) − λ)∧̄ΩΦω(s)

= ELω(s) ⊗ ω + λELω(s) ◦ EΦω(s) ⊗ ω − dλELω(s)∧̄ΩΦω(s)

= P+
s ELω(s) ⊗ ω

and finally by(3.10):

0 = Ēs(Ps(Dv
s )) ⊗ ω = (P+

s Ēs)(D
v
s )ω + d(λĒs ◦ΩΦω(s)(Dv

s ))

= (P+
s ELω(s))(Dv

s ) + d[(λELω(s) − λ) ◦ΩΦω(s)(Dv
s )], ∀Dv

s ∈ Γ (X, s∗VY )

Taking now in particular sectionsDv
s with compact support we get

∫
X

(P+
s ELω(s))(Dv

s ) =
0, so thatP+

s ELω(s) = 0, that is,s is critical for the constrained variational problem, and
d[(λELω(s) − λ) ◦ΩΦω(s)(Dv

s )] = 0 for anyDv
s ∈ Γ (X, s∗VY ).

Taking in the latter arbitrary functionsf ∈ C∞(X) and sectionsDv
s ∈ Γ (X, s∗VY ) we

get:

0 = d[(λELω(s) − λ) ◦ΩΦω(s)(fDv
s )] = df ∧ [(λELω(s) − λ) ◦ΩΦω(s)(Dv

s )]

and in virtue of the arbitrariness off andDv
s we obtain (λELω(s) − λ) ◦ΩΦω(s) = 0, which

by Hypothesis (HY1)of Section3 leads toλELω(s) − λ = 0, concluding the proof. �



P.L. Garcı́a et al. / Journal of Geometry and Physics 56 (2006) 571–610 597

The relevance of this result can be seen in the fact that it proves, together with the second
part ofTheorem 5.1, that for regular constrained variational problems the lifting

i : s ∈ ΓS(X, Y ) 
→ (j1s, λELω(s)) ∈ Γ (X, S ×Y E
∗) (5.12)

defines a bijective mapping between the set of critical sections of the constrained variational
problem and the set of solutions of Cartan equation(5.11).

This justifies the consideration of the fibrationsS ×Y E
∗ π→Y

p→X (where dim(S ×Y

E∗) = dimJ1Y ), together with the (n+ 1)-form Ω̂2 = dΘ̂|S×YE∗ as the basic structure to
construct the multi-symplectic formalism of the constrained variational calculus. In particu-
lar, for unconstrained problems, whereS = J1Y ,E = 0 andΦ = 0, we getS ×Y E

∗ = J1Y

andΘ̂ = ΘLω, thus recovering the ordinary multi-symplectic formalism.

6. Examples

In this section we shall illustrate the general theory with two kinds of examples: prob-
lems with one independent variable (mechanics) and two cases with several independent
variables, of a physical and geometrical interest respectively: general relativity in the sense
of Palatini and a certain class of isoperimetric problems for hypersurfaces in a Riemannian
manifold.

6.1. Mechanics

In this case we shall deal with problems in one independent variable,X = R, where
the coordinatet of R represents the “time” variable. The bundleY will be in this case
M × R, whereM is a m-dimensional manifold with local coordinates (qi), which shall
be interpreted as the configuration space of a mechanical system withm degrees of free-
dom. Therefore we haveJ1(M × R) = TM × R, where the tangent bundleTM, which
has the induced local coordinate system (qi, q̇i), is called the “space of velocities” of the
system.

Let Ldt be a Lagrangian density andS a constraint submanifold inTM × R satisfying
Hypotheses (HY1) and (HY2)from Section3 with respect to a givenk-rank vector bundle
onM × R. The corresponding theory in this case is the so-called vakonomic mechanics
(Arnold 1988), which has attracted much attention in the last years.

A typical example in this situation is that of linear constraintsS = ∆× R, where∆ is a
(m− k)-dimensional non integrable distribution,E is the pull-back toM × R→ M of the
quotient TM/∆ andΦ : TM × R→ E is the bundle morphism induced by the canonical
projectionTM → TM/∆. The application in this case of our general theory is instructive, as
we may interpret it in terms of the geometry of the distribution∆ ⊂ TM, and recover in this
way from a non-linear perspective many of the classical results of the linear non-holonomic
systems.

If we follow the different questions under consideration for the general theory, Section
3 delivers firstly the equations of vakonomic mechanics:

Φ(s) = 0, ELdt(s) ⊗ dt + λ(s) ◦ EΦdt(s) ⊗ dt − dλ∧̄ΩΦdt(s) = 0 (6.1)
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where the multiplierλ(s) ∈ C∞(R) is univocally determined by formula:

λ(s) = λELdt (s) = (−ELdt ◦N)(s)

whereN is a solution of the system(3.6)alongj2s.
The Cartan form̃Θ from Section4 is in this case a 1-form onJ2(M × R) = T (2)M × R

(whereT (2)M is the second order tangent bundle ofM), which is projected through the
morphism(5.1)into the 1-formΘ̂ = ΘLdt + λ ◦ΘΦdt onJ1Y ×Y E

∗ = (TM × R) ×M×R
E∗ (Section5). Specially interesting are the conservative (or autonomous) systems, which
are those for which∂/∂t is an infinitesimal symmetry in the sense ofDefinition 4.4. The
corresponding Noether invariantH̃ = −i(∂/∂t)Θ̃ ∈ C∞(T (2)M × R), which can be projected
via (5.1) to the functionĤ = −i(∂/∂t)Θ̂ ∈ C∞((TM × R) ×M×R E∗), is a first integral for
the equations of movement(6.1), calledenergy.

Regarding the regularity (Section5), it is easy to see, applyingProposition 5.4and
the theorem of the inverse function, thatΘ̂ defines on the (2m+ 1)-dimensional manifold
S ×M×R E∗ a contact 1-form whose local expression is:

Θ̂ = p̂i dq
i − Ĥ dt

where the momenta ˆpi ∈ C∞(S ×M×R E∗) are given by:

p̂i = ∂L

∂q̇i
+ λα

∂φα

∂q̇i
(6.2)

In this case(5.12)gives a canonical bijective correspondence between critical sections of the
constrained variational problem and the integral curves of the characteristic vector fieldD̂

of the contact 1-form̂Θ, that is, the only vector field̂D ∈ X(S ×M×R E∗) with i
D̂

dΘ̂ = 0,

D̂(t) = 1.
In particular, for conservative systems one obtains the corresponding Hamiltonian for-

malism taking on the 2m-dimensional manifoldM2m = (S ×M×R E∗)t=0 the symplectic
metricΩ2 = dΘ̂|M2m and the Hamiltonian̂H |M2m (see[2] for a local version of this result).

In the following we shall illustrate the results above with three classical examples taking
special emphasis on the solvability of equations(3.6), which constitute the fundamentals
of this work.

6.1.1. The catenary
This is the mechanical system with two degrees of freedom, configuration spaceM =

R
2 coordinated by (x, y), LagrangianL : TM × R→ R given byL = y and (non-linear)

constraintS ⊂ TM × R defined by
√
ẋ2 + ẏ2 − 1 = 0.

Taking as bundleq : E → M × R the direct product (M × R) × R, and the morphism
Φ : TM × R→ E defined by the functionΦ =

√
ẋ2 + ẏ2 − 1, for ẋ2 + ẏ2 �= 0 we get

the following momentum formΩΦdt and Euler–Lagrange operatorEΦdt associated to the
constraint:

ΩΦdt = 1

(ẋ2 + ẏ2)1/2
(ẋ dx+ ẏ dy), EΦdt = ẋÿ − ẏẍ

(ẋ2 + ẋ2)3/2
(ẏ dx− ẋ dy)



P.L. Garcı́a et al. / Journal of Geometry and Physics 56 (2006) 571–610 599

The system of equations(3.6) has, on the dense open subset defined by ˙xÿ − ẏẍ �= 0,
the only solutionN ∈ Γ (T (2)M × R, (E∗ ⊗ TM)T (2)M×R):

N = (ẋ2 + ẏ2)1/2

ẋÿ − ẏẍ

(
ẏ
∂

∂x
− ẋ

∂

∂y

)
Hence we get on this open subset the multiplier:

λELdt = −ELdt ◦N = ẋ(ẋ2 + ẏ2)1/2

ẋÿ − ẏẍ
(6.3)

Applying now(5.2)we get Cartan’s 1-form:

Θ̂ = λ

(ẋ2 + ẏ2)1/2
(ẋ dx+ ẏ dy) + (y − λ) dt

and, substitutingλ by the expression(6.3), we also obtain the 1-form̃Θ.
As L andΦ are independent of time, the system is conservative and its energy is the

functionĤ = −i∂/∂tΘ̂ = λ− y.
Last, the determinant(5.10) alongS ×M×R E∗ is −λ, so that forλ �= 0 the catenary

problem is a regular constrained variational problem. The momentap̂x, p̂y defined on
S ×M×R E∗ by formulas(6.2) are, respectively,λẋ andλẏ, thus obtaining a Hamiltonian
formulation for the problem onM4 = (S ×M×R E∗)t=0, with symplectic 2-formΩ2 =
dp̂x ∧ dx+ dp̂y ∧ dy and Hamiltonian̂H =

√
p̂2
x + p̂2

y − y.

6.1.2. The soap film
In this caseM = R2, coordinated by (y, v), andL = 2πy(1 + ẏ2)1/2. The constraintS

is given by the affine equatioṅv− πy2 = 0. Taking again as bundleE the direct product
(M × R) × R and the morphismΦ defined by the functionΦ = v̇− πy2, one gets:ΩΦdt =
dv andEΦdt = −2πy dy, so that the system(3.6) has fory �= 0 the only solutionN =
−(1/2πy)(∂/∂y). Therefore on the dense open subsety �= 0 one obtains the multiplier:

λELdt = −ELdt ◦N = 1 + ẏ2 − yÿ

y(1 + ẏ2)3/2
(6.4)

From(5.2)we obtain the following Cartan 1-form:

Θ̂ = 2πyẏ√
1 + ẏ2

dy + λdv+
(

2πy√
1 + ẏ2

− πy2λ

)
dt

and from here we also obtaiñΘ substitutingλ by the expression(6.4).
This system is also conservative, and its energy isĤ = −i∂/∂tΘ̂ = (−2πy/

√
1 + ẏ2) +

πy2λ. It is also regular, as the determinant(5.10) is −2πy/(1 + ẏ2)3/2 �= 0 on the dense
open subset we are considering. Regarding the momentap̂y andp̂v defined by(6.2), they
are respectively 2πyẏ/

√
1 + ẏ2 andλ, which together with the constraint equation allow
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us to obtain a Hamiltonian formulation onM4 = (S ×M×R E∗)t=0 with symplectic 2-form

Ω2 = dp̂y ∧ dy + dp̂v ∧ dv and Hamiltonian̂H = −
√

4π2y2 − p̂2
y + πy2p̂v.

6.1.3. The skateboard on an inclined plane
The configuration space of this problem isM = R2

(x,y) × S1
ϕ wherex andy represent

the position of the skateboard on the plane andϕ its angle with respect to thex-axis. The
LagrangianL : TM × R→ R is the functionL = (1/2)m(ẋ2 + ẏ2) + (1/2)Iϕ̇2 − gy (g
= gravity), and the constraintS ⊂ TM × R is the linear submanifold defined by ˙x sinϕ −
ẏ cosϕ = 0. Taking again as bundleq : E → M × R the direct product (M × R) × R and
the morphismΦ : TM × R→ E defined by the functionΦ = ẋ sinϕ − ẏ cosϕ we obtain
the following momentum formΩΦdt and Euler–Lagrange operatorEΦdt associated to the
constraint:

ΩΦdt = sinϕ dx− cosϕ dy

EΦdt = −ϕ̇ cosϕ dx− ϕ̇ sinϕ dy + (ẋ cosϕ + ẏ sinϕ) dϕ

The system of equations(3.6) has solutions for ˙x cosϕ + ẏ sinϕ �= 0 given by the affine
subspace ofΓ (TM × R, (E∗ ⊗ TM)TM×R):

N =
(

cosϕ(ẋ cosϕ + ẏ sinϕ)
∂

∂x
+ sinϕ(ẋ cosϕ + ẏ sinϕ)

∂

∂y
+ ϕ̇

∂

∂ϕ

)
f

+ 1

ẋ cosϕ + ẏ sinϕ

∂

∂ϕ
, f ∈ C∞(TM × R) (6.5)

obtaining in this way a family of multipliers:

λELdt = −ELdt ◦N = (mẍ cosϕ + (g +mÿ) sinϕ)(ẋ cosϕ + ẏ sinϕ)f + Iϕ̈ϕ̇f

+ Iϕ̈

ẋ cosϕ + ẏ sinϕ
, f ∈ C∞(TM × R) (6.6)

Applying (5.2)we obtain Cartan’s 1-form:

Θ̂ = (mẋ+ λ sinϕ) dx+ (mẏ − λ cosϕ) dy + Iϕ̇ dϕ

−
(

1

2
m(ẋ2 + ẏ2) + 1

2
Iϕ̇2 + gy

)
dt

and from this, we may obtain a family of Cartan 1-formsΘ̃ substitutingλ by the expressions
(6.6)

As for the previous examples this is a conservative system with energy:

Ĥ = −i∂/∂tΘ̂ = 1
2m(ẋ2 + ẏ2) + 1

2Iϕ̇
2 + gy

Regarding the regularity, the determinant(5.10) is −mI �= 0, so that our system is also
regular. Eq.(6.2)give us the following momenta:

p̂x = mẋ+ λ sinϕ, p̂y = mẏ − λ cosϕ, p̂ϕ = Iϕ̇
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which, together with the constraint equation allow us to obtain a Hamiltonian formulation for
this problem onM6 = (S ×M×R E∗)t=0 with symplectic 2-formΩ2 = dp̂x ∧ dx+ dp̂y ∧
dy + dp̂ϕ ∧ dϕ and Hamiltonian:

Ĥ = 1

2m

(
p̂x cosϕ + p̂y sinϕ

)2 + 1

2I
p̂2
ϕ + gy

6.2. General relativity as a first order constrained variational problem

Following Palatini (1919) the starting point for the study of general relativity as a first
order variational problem is the fibre productM×X C over a four-dimensional manifold
X oriented by a volume elementω (the space-time) of the bundleρ :M→ X of Lorentz
metrics onX and the affine bundle� : C→ X (with associated vector bundleS2T ∗X⊗ TX)
of symmetric linear connections onX.

On the bundleJ1(M×X C) we consider the constrained variational problem whose
Lagrangian density is the scalar curvature associated to a metricg ∈ Γ (X,M) and to a
linear connection∇ ∈ Γ (X, C):

Lω(j1
x(g,∇)) = (trace(g−1 · Curv∇)ωg)x

(Curv∇ = three-covariant, 1-contravariant curvature tensor of∇, andωg =volume element
associated tog) and whose constraint submanifold is:

S = {j1
x(g,∇)/∇(x) = ∇g(x) = Levi-Civita connection ofg} ⊂ J1(M×X C )

In a local coordinate system (xν, gαβ, γσαβ, gαβ,ρ, γ
σ
αβ,ρ)α≤β of J1(M×X C), with ω =

dx1 ∧ · · · ∧ dxn, we have the following expression for the Lagrangian density:

Lω = Rσσµνg
µν
√

− detg dx1 ∧ · · · ∧ dxn (6.7)

whereRτσµν = γτµν,σ − γτσν,µ + γαµνγ
τ
ασ − γασνγ

τ
αµ and (gµν) = g−1( dxµ,dxν), and the fol-

lowing equations for the constraint submanifold:

φσµν =
(
γσµν − 1

2
gσρ(gρµ,ν + gνρ,µ − gµν,ρ)

)√
− detg = 0

Taking in this case as bundleE the pull-back toM×X C of the vector bundle
S2T ∗X⊗ TX, the constraint submanifold isS = Φ−1(0E), whereΦ : J1(M×X C) → E

is the bundle morphism defined byΦ(j1
x(g,∇))ω = (∇(x) − ∇g(x)) ⊗ ωg, whose local ex-

pression is given by the functionsφσµν defined above.
Taking into account the canonical identification:

V (M×X C)
∗ ⊗ E = (VM∗ ⊕M×XC VC

∗) ⊗ E = [(S2TX⊗ S2T ∗X⊗ TX) ⊕X

×(S2TX⊗ T ∗X⊗ S2T ∗X⊗ TX)]M×XC
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simple computations prove that the momentum formΩΦω and Euler–Lagrange operator
EΦω associated to theE-valued Lagrangian densityΦω have the local expressions:

ΩΦω =
∑
µ≤ν

−1

2
gσρ(ων ⊗ dgρµ + ωµ ⊗ dgνρ − ωρ ⊗ dgµν) ⊗

(
dxµ dxν ⊗ ∂

∂xσ

)
(6.8)

EΦω ⊗ ω =
(EΦω)M ⊗ ω,

∑
α≤β

dγναβ ⊗
(

dxα dxβ ⊗ ∂

∂xν

)
⊗ ωg

 (6.9)

whereωµ = i∂/∂xµωg, dxµ dxν is the symmetrization of the tensor product dxµ ⊗ dxν and
(EΦω)M is theVM∗ ⊗ E-component ofEΦω.

Given a section (g,∇) ∈ Γ (X,M×X C), and taking(6.8) into account, we obtain that
for a sectionN =∑µ≤ν Nµν(∂/∂gµν) +∑α≤β Nναβ(∂/∂γναβ) of (g,∇)∗V (M×X C) to be
incident withΩΦω(g,∇), there must hold that for any indicesσ,µ, ν:

Nρµg
σρων +Nνρg

σρωµ −Nµνg
σρωρ = 0

whereNαβ is defined asNβα for α > β, therefore:

Nσµ
∂

∂xν
+Nνσ

∂

∂xµ
−Nµν

∂

∂xσ
= 0, Nµν

∂

∂xσ
+Nσµ

∂

∂xν
−Nνσ

∂

∂xµ
= 0

and henceNσµ(∂/∂xν) = 0, that is:Nσµ = 0.
This proves, in particular, taking the 1-jets at any point, that the matrix (∂φσµν/∂gαβ,ρ)

has constant rank 40 alongS and therefore, that all the conditions inHypothesis (HY1)are
satisfied.

On the other hand, taking into account the expression(6.9)for EΦω ⊗ ω, the only section
N ∈ Γ (J2(M×X C), V (M×X C) ⊗ E∗) solution for the system(3.6) is given by:

N ⊗ ωg =
[

0,
∂

∂γναβ
⊗
(
∂

∂xα

∂

∂xβ
⊗ dxν

)
⊗ ω

]
(6.10)

In fact, except for the presence of the volume elementω, the second component in(6.10)
is simply the pull-back toJ2(M×X C) of the identity section I ofE⊗ E∗.

Therefore, our constraint submanifoldS = Φ−1(0E) also satisfiesHypothesis (HY2)of
the theory.

We now take into account (see, for example[32, p. 500]) that the Euler–Lagrange operator
ELω of the Lagrangian density(6.7) as unconstrained variational problem is given by the
expression:

ELω(g,∇) ⊗ ω = [Eins(g,∇)ωg,d
∇ (g−1 ⊗ ωg) − Sym(Id⊗ ·d∇ (g−1 ⊗ ωg))]

(6.11)

where Eins(g,∇) is the Einstein tensor associated to the metric tensorg and to the linear
connection∇, d∇ denotes the covariant derivative ofg−1 ⊗ ωg with respect to∇ and
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·d∇ (g−1 ⊗ ωg) denotes the contraction of a contravariant index of d∇ (g−1 ⊗ ωg) with the
covariant index produced by d∇ . We obtain thus the following expression forλELω(g,∇):

λELω(g,∇)ωg = −〈ELω(g,∇), N(g,∇) ⊗ ωg〉 = −〈ELω(g,∇), [0, I ⊗ ω]〉
= [0,−d∇ (g−1 ⊗ ωg) + Sym(Id⊗ ·d∇ (g−1 ⊗ ωg))] (6.12)

From this result and from(6.8), (6.9) and (6.11)we obtain the following Euler–Lagrange
operator for the constrained variational problem:

P+
(g,∇)(ELω(g,∇)) ⊗ ω

= ELω(g,∇) ⊗ ω + λELω(g,∇) ◦ EΦω(g,∇) ⊗ ω − dλELω(g,∇)∧̄ΩΦω(g,∇)

= [Eins(g,∇)ωg,d
∇ (g−1 ⊗ ωg) − Sym(Id· d∇ (g−1 ⊗ ωg))]

+ [0,−d∇ (g−1 ⊗ ωg) + Sym(Id· d∇ (g−1 ⊗ ωg))] = [Eins(g,∇)ωg,0]

Therefore, followingCorollary 3.9, an admissible section (g,∇g) is critical for the con-
strained variational problem if and only if Eins(g,∇g) = 0.

The key point is the following: the constraint condition (that is,∇ = ∇g) is in this case
equivalent to the second group of Euler–Lagrange equations d∇ (g−1 ⊗ ωg) − Sym(Id·
d∇ (g−1 ⊗ ωg)) = 0 of the Lagrangian density as an unconstrained variational problem (see
[32, p.502]), and hence the critical sections for the constrained and unconstrained varia-
tional problem are the same. However this only holds because of the particular choice of the
Lagrangian(6.7). In general for other possible choices to establish the theory this circum-
stance would automatically disappear, producing then the constrained and unconstrained
setup different variational problems.

The Cartan form of the constrained variational problem is:

Θ̃ = ΘLω + λELω ◦ΘΦω

whereλELω (j2
x(g,∇)) = λELω(g,∇)(x) is defined by(6.12)and whereΘLω andΘΦω are the

4-forms onJ1(M×X C):

ΘLω = gµν[dγσµν ∧ ωσ − dγσσν ∧ ωµ + (γαµνγ
σ
ασ − γασνγ

σ
αµ)ωg] (6.13)

ΘΦω =
∑
µ≤ν

[
γσµνωg − 1

2
gσρ(dgµρ ∧ ων + dgνρ ∧ ωµ − dgµν ∧ ωρ)

]

⊗
(

dxµ dxν ⊗ ∂

∂xσ

)
As the multiplierλELω only depends on the first derivatives and vanishes on the constraint

submanifold we conclude that̃Θ is a four-form onJ1(M×X C) such thatΘ̃
∣∣∣
S

= ΘLω.

ConsideringDefinition 5.3, in this case regularity does not hold, the tangential vector
fields generated by∂/∂γσµν,ρ are in the kernel of the corresponding polarityD ∈ TY (S ×Y

E∗) 
→ iD dΘ̂, which therefore is not injective.
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Let us finish the study of this example by noting that the constrained variational problem
under consideration is nothing else but the Lagrangian reduction of the usual metric formula-
tion of general relativity by the bundle morphismτ : J1M→M×X C defined by the rule
τ(j1

xg) = (g(x),∇g(x)). Following the general framework of Lagrangian reduction (see, for
example[10]), Hilbert’s Lagrangian is, precisely,τ∗(1)LωwhereLω is Palatini’s Lagrangian

defined onJ1(M×X C) by formula(6.7)andτ(1) : J2M→ J1(M×X C) is the 1-lifting
of τ (that is,τ(1)(j2

xg) = j1
x(τ ◦ j1g)). As we have seen in this example a metric tensorg ∈

Γ (X,M) satisfies Einstein equations if and only ifτ ◦ j1g = (g,∇g) ∈ ΓS(X,M×X C)
is a critical section of the constrained variational problem of Palatini and conversely (re-
duction and reconstruction). Regarding the corresponding Cartan forms, following(6.13)
ΘLω can be projected toM×X C andΘτ∗(1)Lω

= τ∗ΘLω, thus recovering the well-known
result that the Cartan form of Hilbert’s Lagrangian, which in principle should be defined on
J3M, can be projected toJ1M.

6.3. Isoperimetric problems for hypersurfaces in a Riemannian manifold

In this case we shall consider immersions of a givenn-dimensional manifoldX into a
Riemannian manifoldM with metric tensor ¯g.

Letp : Y = X×M → X be the trivial bundle defined by the product of both manifolds
and identify its sections with mappingss : X → M. Given a fixed volume elementω onX,
we shall consider the constrained variational problem onJ1Y whose constraint submanifold
is:

S = {j1
xs/ωg = ω} ⊂ J1Y

whereωg is the volume element induced onX by the first fundamental form of the hypersur-
faceg = s∗ḡ, andω is the fixed volume element onX. This is the isoperimetric constraint,
according to which admissible sectionss ∈ ΓS(X, Y ) are immersions that induce a fixed
“area” element on the hypersurfaces(X) ⊂ M. The Lagrangian densities we shall consider
for our constrained problem will be of the form:

Lω(j1
xs) = s∗(iDωḡ) (6.14)

whereωḡ is the volume (n+ 1)-form onM induced by the metric tensor ¯g, andD is a fixed
vector field onM. As can be seen by a simple application of Stokes’ Theorem, in the case
that div̄gD = 1 ands(X) is the boundary of a compact domain inM, this Lagrangian density
represents the volume enclosed by the hypersurface.

Taking the bundleE = Y × R, the constraint submanifold isS = Φ−1(0), whereΦ :
J1Y → E is defined byΦ(j1

xs)ω = ωg(x) − ω(x). Considering local coordinate systems
(xν) for X with ω = dx1 ∧ · · · ∧ dxn, (yj) for M with ḡ = ḡijdyi dyj and the induced coor-

dinates (xν, yj, yjν) onJ1Y , the function defining the constraint is:

φ =
√

detg− 1 (6.15)

whereg = (gµν) with gµν = yiµy
j
νḡij. On the other hand if we have the local expression

D = qj(∂/∂yj) (qj ∈ C∞(M)), the Lagrangian density defined by(6.14)is:



P.L. Garcı́a et al. / Journal of Geometry and Physics 56 (2006) 571–610 605

Lω = (−1)j+1qj
√

detḡ det(yiν)[j] dx1 ∧ · · · ∧ dxn (6.16)

where det(yiν)[j] is the minor obtained by elimination of thejth row of the matrix (yiν)
From(6.15)we may compute the associated momentum formΩΦω and Euler–Lagrange

operatorEΦω. Using the natural identification ofVY with X× TM, these are:

ΩΦω = P⊥ · ωg, EΦω ⊗ ω = −iHḡ⊗ ωg

whereH(j2
xs) denotes theTM-valued function onJ2Y that produces the mean curvature

vector associated tos : X → M ats(x) (that is, the trace of the Weingarten endomorphism),
P⊥ denotes theT ∗M ⊗ TX-valued function onJ1Y defined atj1

xs as the orthogonal pro-
jection ofTs(x)M to TxX given bys : X → M, andP⊥ · ωg denotes the contraction of its
contravariant component with a covariant component ofωg.

It is clear that (∂φ/∂yiµ) vanishes only ifP⊥(j1
xs) = 0, that is, at singular points with

Ims∗ = {0}. Therefore the constraint satisfiesHypothesis (HY1). On the other hand, on a
dense open subset ofJ2Y there exists a unique solution of the system of linear equations
(3.6), the sectionN ∈ Γ (J2Y,E∗ ⊗ VY ) = Γ (J2Y, TM) defined by:

N ⊗ ωg = − H
‖H‖2 ⊗ ω

defined at those pointsj2
xs where the mean curvature‖H‖ of the hypersurface does not

vanish. HenceHypothesis (HY2)also holds.
Lengthy but trivial computations lead us from(6.16)to the intrinsic and local expressions

of the Euler–Lagrange operator associated to the Lagrangian densityLω as a variational
problem without constraints:

ELω ⊗ ω = dyk ⊗ (−1)k+1 det(yiν)[k]
∂

∂yj
(qj
√

detḡ)dx1 ∧ · · · ∧ dxn

= (divḡD) dyk ⊗ s∗i(∂/∂yk)ωḡ = (divḡD)iNḡ⊗ ωg (6.17)

where div̄gD stands for the divergence of the vector fieldD with respect to the volume
elementωḡ andN(j2

xs) ∈ Ts(x)M is the normal vector field associated to the hypersurface
defined bys and to the chosen orientationsωḡ andω at s(x).

It must be noted thatELω ⊗ ω can be projected fromJ2Y to J1Y . This reflects the fact
that even thoughs∗iDωḡ does depend onj1s, its differential does not depend onj2s, in fact
ds∗iDωḡ = s∗ diDωḡ.

The Lagrange multiplier(3.14)is then:

λELω = −ELω ◦N = (divḡD)ḡ

(
N,

H
‖H‖2

)
= divḡD

‖H‖ (6.18)

where the last equality holds if we assume that the orientations are chosen so that ¯g(N,
H) > 0.
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From this result we obtain the following expression for the Euler–Lagrange operator of
the constrained variational problem:

P+
s ELω(s) ⊗ ω = ELω(s) ⊗ ω + λELω(s)EΦω(s) ⊗ ω − dλELω(s)∧̄ΩΦ(s)

= (divḡD)iNḡ⊗ ωg − divḡD

‖H‖ iHḡ⊗ ωg − d

(
divḡD

‖H‖
)

∧̄(P⊥ · ωg)

= −d
(

divḡD

‖H‖
)

∧̄(P⊥ · ωg) = −i
gradg

(
divḡD
‖H‖

)ḡ⊗ ωg

where gradg(divḡD/‖H‖) stands for the gradient of the function divḡD/‖H‖ on the hy-
persurface, with respect to its first fundamental formg, as a vector field on the ambient
manifoldM defined alongs(X), which coincides with the orthogonal projection tos(X) of
the gradient with respect to ¯g of the function div̄gD/‖H‖.

Therefore, followingCorollary 3.9, an admissible sections is critical for the constrained
variational problem if and only if gradg(divḡD/‖H‖) = 0. For the case div̄gD = 1 (i.e., for
the Lagrangian density that gives the enclosed volume) the solutions are those hypersurfaces
with (non-vanishing) constant mean curvature‖H‖.

The Cartan form of the constrained variational problem is:

Θ̃ = ΘLω + λELω ◦ΘΦω

whereλELω (j2
xs) = λELω(s)(x) is defined by(6.18)and whereΘLω andΘΦω are then forms

onJ1Y = (T ∗X⊗X×M TM) whose intrinsic and local expressions are:

ΘLω(j1
xs) = dyj ∧ s∗(i(∂/∂yj)iDωḡ)(x) + (1 − n)s∗(iDωḡ)(x)

= (−1)k+1qk
√

detḡ[(1 − n) det(yiν)[k] dx1 ∧ · · · ∧ dxn

+sgn(k − j)(−1)j+1 det(yiν)
[µ]
[k,j] dyj ∧ dx1 ∧ · · ·[µ] · · · ∧ dxn]

ΘΦω(j1
xs) = P⊥(s(x))∧̄ωg(x) + (1 − n)ωg(x) − ω(x)

= gµνykνḡkj
√

detgdx1 ∧ · · · ∧ dxµ−1 ∧ dyj ∧ dxµ+1 ∧ · · · ∧ dxn

+ (1 − n)
√

detgdx1 ∧ · · · ∧ dxn − dx1 ∧ · · · ∧ dxn

(6.19)

where det(yiν)
[µ]
[k,j] stands for the minor of (yiν) corresponding to the elimination of thek, jth

rows andµth column, and (gµν) stands for the inverse matrix of (gµν).
Any vector fieldV ∈ X(M), infinitesimal symmetry forωḡ and D (i.e. LVωḡ = 0,

[V,D] = 0) naturally induces ap-vertical symmetry of our constrained variational problem
V ∈ X(Y ). Applying NoetherTheorem 4.5for these symmetries and the intrinsic expres-
sions in(6.19)we may compute the following Noether invariants:

(j2s)∗ij2VΘ̃ = s∗iV
(
iD+(divḡD/‖H‖)Nωḡ

)
Thus obtaining non-trivial (n− 1)-forms that are closed whenever the hypersurface defined
by s is critical for our constrained variational problem.
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Appendix A. Independence of the theory with respect to the vector bundle E and
the bundle morphism Φ : J1Y → E defining the constraint submanifold
S = Φ−1(0E).

As can be seen, the theory is based on the consideration of a vector bundleq : E → Y

and a bundle morphismΦ : J1Y → E on Y, which satisfyHypotheses (HY1) and (HY2),
and such that the constraint submanifold is given byS = Φ−1(0E). A natural question now
is: Is the whole theory independent of the chosen vector bundleE and morphismΦ? In this
appendix we shall give a precise answer proceeding as follows:

First of all, we shall imposeHypothesis (HY2)from Section3 in the following way,
more suitable for our purposes:

Hypothesis (HY2′). On a dense open subset ofS(2) ⊂ J2Y (the inverse image ofS ⊂ J1Y

by the canonical projection), there exists a sectionN ∈ Γ (S(2), (E∗ ⊗ VY )J2Y ), solution of
the system of equations:

ΩΦω ◦N = 0, EΦω ◦N = I (3.6′)

Locally:

m∑
j=1

∂φα

∂y
j
ν

N
j
β = 0,

m∑
j=1

[
∂φα

∂yj
−
∑
ν

∂

∂xν

(
∂φα

∂y
j
ν

)]
N
j
β = δαβ (3.7′)

alongS(2),1 ≤ α, β ≤ k,1 ≤ ν ≤ n.

Let {N}(E,Φ) be the set of solutions of the system of equations(3.6′). If q′ : E′ → Y

andΦ′ : J1Y → E′ are anotherk-rank vector bundle and bundle morphism onY satisfying
Hypothesis (HY1), then due to this hypothesis there exists a unique vector bundle isomor-
phismτ : ES → E′

S between the vector bundles onS induced byE andE′, such that with
the usual identifications: dΦ′ = τ ◦ dΦ alongS. Letτ(2) : (E∗ ⊗ VY )S(2) → (

E′∗ ⊗ VY
)
S(2)

be the isomorphism defined by the action ofτ onE∗
S(2) and the identity morphism onVYS(2).

In this situation we have the following:

Lemma 1.E′ and Φ′ satisfy Hypothesis (HY2′) and it holds:

{N ′}(E′,Φ′) = τ(2){N}(E,Φ)

Proof. GivenN ∈ {N}(E,Φ), we shall see thatN ′ = τ(2)N is a solution for the system
of linear equationsΩΦ′ω ◦N = 0,EΦ′◦N = I′. In a local coordinate system, let (aα

′
α ), aα

′
α ∈

C∞(S),1 ≤ α, α′ ≤ k be the matrix of the isomorphismτ : ES → E′
S with respect to trivial-
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izationseα, e′α′ of the bundlesE andE′. The equation dΦ′ = τ ◦ dΦalongS can be locally ex-

pressed by dφ′α′ = aα
′
α dφα. On the other hand, ifN = N

j
αe

∗α ⊗ (∂/∂yj) thenN ′ = τ(2)N =
N ′j

α′e′∗α
′ ⊗ (∂/∂yj) whereN ′j

α′ = bαα′N
j
α for (bαα′ ) the inverse matrix of (aα

′
α ). Therefore:

(ΩΦ′ω ◦N ′)β
′ν
α′ = ∂φ′β′

∂y
j
ν

N
′j
α′ = a

β′
β

∂φβ

∂y
j
ν

bαα′Njα = a
β′
β b

α
α′
∂φβ

∂y
j
ν

Njα = 0

(EΦ′ω ◦N ′)β
′
α′ =

(
∂φ′β′

∂yj
− ∂

∂xν

(
∂φ′β′

∂y
j
ν

))
N

′j
α′=

(
a
β′
β

∂φβ

∂yj
− ∂

∂xν

(
a
β′
β

∂φβ

∂y
j
ν

))
bαα′Njα

= a
β′
β b

α
α′

(
∂φβ

∂yj
− ∂

∂xν

(
∂φβ

∂y
j
ν

))
Njα − bαα′

∂a
β′
β

∂xν

∂φβ

∂y
j
ν

Njα=aβ
′
β b

α
α′δβα=δβ

′
α′

Hence, along the dense open subset ofS(2) whereN is defined we get thatN ′ = τ(2)N is a
solution for the system of equationsΩΦ′ω ◦N ′ = 0, EΦ′ω ◦N ′ = I′, and thereforeE′ and
Φ′ satisfyHypothesis (HY2′).

If {N ′}(E′,Φ′) is the corresponding set of solutions, using the same argument for the
inverse isomorphismτ−1, we get the identity{N ′}(E′,Φ′) = τ(2){N}(E,Φ). �

Let now {Ps}(E,Φ) and {P+
s }(E,Φ) be the families of projectors defined by the set of

solutions{N}(E,Φ) for each admissible sections ∈ ΓS(X, Y ) by formulas(3.8) and (3.9),
and let{Θ̃}(E,Φ) be the corresponding family of Cartan forms alongS(2) defined by(4.1).

Proposition 1. The families {Ps}(E,Φ), {P+
s }(E,Φ) and {Θ̃}(E,Φ) do not depend on the cho-

sen vector bundle E nor on the bundle morphism Φ : J1Y → E defining the constraint
submanifold S = Φ−1(0E).

Proof. If q′ : E′ → Y andΦ′ : J1Y → E′ are anotherk-rank vector bundle and bundle
morphism onY satisfyingHypothesis (HY1), following the previous Lemma it suffices to
prove that ifPs, P+

s andΘ̃ are the corresponding projections and Cartan form alongS(2)

for a solutionN ∈ {N}(E,Φ) andP ′
s, P

′+
s andΘ̃′ the corresponding ones for the solution

N ′ = τ(2)N ∈ {N ′}(E′,Φ′) then:Ps = P ′
s, P

+
s = P ′+

s andΘ̃ = Θ̃′.
To prove the identityPs = P ′

s, following(3.8), it suffices to see thatNs ◦ (j1Dv
s )Φ = N ′

s ◦
(j1Dv

s )Φ
′ for anyDv

s ∈ Γ (X, s∗VY ), which is proven by the following local computation:

N ′
s ◦ (j1Dv

s )Φ
′ = N ′

s ◦ dΦ′(j1Dv
s ) = N

′j
α′dφ′α′

(j1Dv
s )
∂

∂yj
= bαα′Njαa

α′
β dφβ(j1Dv

s )
∂

∂yj

= bαα′aα
′
β N

j
αdφβ(j1Dv

s )
∂

∂yj
= Njαdφα(j1Dv

s )
∂

∂yj

= Ns ◦ dΦ(j1Dv
s ) = Ns ◦ (j1Dv

s )Φ

In a similar way, the equationEs(N) ◦ΩΦω = Es(N ′) ◦ΩΦ′ω is proven and therefore fol-
lowing formula(3.10)and the identityPs = P ′

s we conclude that alsoP+
s = P ′+

s .
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Finally, applying(4.1) and considering the identityELω(N) ◦ (θ∧̄ΩΦω) = ELω(N ′) ◦
(θ∧̄ΩΦ′ω) alongS(2) (which is proven with the same local computations as for the previous
identities), we obtaiñΘ = Θ̃′ alongS(2), thus concluding the proof. �

As a consequence of this proposition, the whole theory developed in Section3 and the
corresponding Cartan and Noether formulations in Section4 do not depend on the chosen
vector bundleE and bundle morphismΦ : J1Y → E that define the constraint submanifold
S = Φ−1(0E).

Regarding the contents of Section5, we may state the following: Given (E,Φ) and
(E′, Φ′), the vector bundle isomorphismτ : ES → E′

S induces an isomorphism between
S ×Y E

∗ = E∗
S andS ×Y E

′∗ = E′∗
S that transforms one to the other both Cartan forms

Θ̂ = ΘLω + λ ◦ΘΦω andΘ̂′ = ΘLω + λ′ ◦ΘΦ′ω defined by formulae(5.2), and gives in
this way a canonical isomorphism between both variational formulations onS ×Y E

∗ and
S ×Y E

′∗ as described in Section5. In particular, we must note the independence of the
notion of regularity (Definition 5.3) with respect to the chosen pair (E,Φ) that defines the
constraint submanifold.
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[1] V. Aldaya, J.A. de Azćarraga, Geometric formulation of classical mechanics and field theory, Riv. Nuovo
Cimento (3) 3 (10) (1980) 1–66.

[2] V.I. Arnol’d, V.V. Kozlov, A.I. Neı̆ shtadt, Dynamical Systems III, Encyclopaedia of Mathematical Sciences,
vol. 3, Springer Verlag, Berlin, 1988.

[3] G.A. Bliss, The problem of Lagrange in the calculus of variations, Am. J. Math. 52 (1930) 673–744.
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[9] A. Ferńandez, P.L. Garcı́a, C. Rodrigo, Stress-energy-momentum tensors in higher order variational calculus,

J. Geom. Phys. 34 (1) (2000) 41–72.
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